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THE DEVELQPMENT OF SEQUENCE ANALYSIS METHODS has depended on the contributions of
als from varied scientific backgrounds. This chapter provides a brief histor-
he more significant advances that have taken place, as well as an overview
this book. Because many contributors cannot be mentioned due to space
nal references to earlier and current reference books, articles, reviews,
e a broader view of the field and are included in the reference lists to

THE FIRST SEQUEN L‘CA) WERE THOSE OF PROTEINS

encing methods (Sanger and Tuppy 1951) led to the
eral of the more common protein families such as
s. Margaret Dayhoft (1972, 1978) and her collabo-
h Foundation (NBRF), Washington, DC, were the
es into a protein sequence atlas in the 1960s, and
yn as the Protein Information Resource (PIR,
p://watson.gmu.edu:8080/pirwww/index.

984, and in 1988, the PIR-International
own.edu/pir) was established as a
guences (MIPS), and the Japan

Protein Sequence
collaboration of )
International P
Dayhoft and

%-and superfamilies based
equency of changes observed
derived. Proteins that were
e observed amino acid
one. From aligned
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Figure 1.1. Method of predicting phylogenetic relationships and probable amino acid changes dur-
ing the evolution of related protein sequences. Shown are three highly conserved sequences (A, B, and
C) of the same protein from three different organisms. The sequences are so similar that each posi-
tion should only have changed once during evolution. The proteins differ by one or two substitu-
tions, allowing the construction of the tree shown. Once this tree is obtained, the indicated amino
acid changes can be determined. The particular changes shown are examples of two that occur much
more often than expected by a random replacement process.
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Subsequently, a set of matrices (tables)—the percent amino acid mutations accepted by
evolutiongy selection or PAM tables—which showed the probability that one amino acid
changed i@ any other in these trees was constructed, thus showing which amino acids are
most co d at the corresponding position in two sequences. These tables are still used
ilarity between protein sequences and in database searches to find
atch a query sequence. The rule used is that the more identical and con-
that there are in two sequences, the more likely they are to have been
on ancestor gene during evolution. If the sequences are very much
bablyahave the same biochemical function and three-dimensional
f and her colleagues contributed in several ways to modern
providing the first protein sequence database as well as
in sequence comparisons. Amino acid substitution tables
sequence alignments and database similarity searches,
cussed in Chapters 3 and 7.

DNA SEQUE

Los Alamos National Laboratory (LANL),
GenBank database and at the European
berg, Germany. Translated DNA
Resource (PIR) database at the
Goad had conceived of the
om 1982 to 1992. GenBank
nology Information (NCBI)
was founded in 1980
DDBJ), Mishima, Japan,

and DDBJ have now
ion (http://www.
basis. PIR has

New Mexico, by
Molecular Bio
sequences werg
National Biory
GenBank pryg

Similar arrangements.
itially, a sequence entry included a computer filenamé

protein sequence
more information about the
proteins, regulatory sites, and references.
along with the sequence into a database format that
or many types of information. There are many such databases
ich are discussed in Chapter 2.
umber of entries in the nucleic acid sequence databases GenBank and EMBL has
ontinued to increase enormously from the daily updates. Annotating all of these new
sequences is a time-consuming, painstaking, and sometimes error-prone process. As time
/ passes, the process is becoming more automated, creating additional problems of acc-
5;1”’1’{‘@6”‘5[’“”"”““' uracy and reliability. In December 1997, there were 1.26 X 10° bases in GenBank; this
' number increased to 2.57 X 10° bases as of April 1999, and 1.0 X 10'° as of September
2000. Despite the exponentially increasing numbers of sequences stored, the implementa-
tion of efficient search methods has provided ready public access to these sequences.

To decrease the number of matches to a database search, non-redundant databases that
list only a single representative of identical sequences have been prepared. However, many
sequence databases still include a large number of entries of the same gene or protein
sequences originating from sequence fragments, patents, replica entries from different
databases, and other such sequences.

any types of se-
quence databases are
described in the first
annual issue of the
journal Nucleic Acids
Research.

The growth
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SEQUENCE RETRIEVAL FROM PUBLIC DATABASES

ple of this technology at NCBI was a menu-driven program called GEN-
D. Benson, D. Lipman, and colleagues. This program searched rapidly

David Lipman

pquence databases.

e entry, such as accession or index number, name and
e, names of relevant genes, types of regulatory
nces, and known mutations. ENTREZ accesses this
of entire sequence databases for matches to one
ams also can locate similar sequences (called
ous similarity comparisons. When asked to
ase, simple pattern search programs will
LREZ searches for similar or related
es, with great ease and lists the

only find exact mg
terms, or complg
found items in
originally allo
and their sup » of related entries or similar

A note of caution is in order. Database query programs such as ENTREZ greatly facili-
tate keeping up with the increasing number of sequences and biomedical journals.
However, as with any automated method, one should be wary that a requested database
search may not retrieve all of the relevant material, and important entries may be
missed. Bear in mind that each database entry has required manual editing at some
stage, giving rise to a low frequency of inescapable spelling errors and other problems.
On occasion, a particular reference that should be in the database is not found because
the search terms may be misspelled in the relevant database entry, the entry may not be
present in the database, or there may be some more complicated problem. If exhaustive
and careful attempts fail, reporting such problems to the program manager or system
administrator should correct the problem.
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SEQUENCE ANALYSIS PROGRAMS

Methods for DNA
sequencing were devel-
oped in 1977 by
Maxam and Gilbert
(1977) and Sanger et
al. (1977). They are
described in greater
detail at the beginning
of Chapter 2.

sequencing involves ordering a set of peaks (A, G, C, or T) on a sequencing
can be quite error-prone, depending on the quality of the data.

A sequences became available in the late 1970s, interest also increased in
ter programs to analyze these sequences in various ways. In 1982 and
Research published two special issues devoted to the application of com-
analysis, including programs for large mainframe computers down to
s. Shortly after, the Genetics Computer Group (GCG) was
consin by J. Devereux, offering a set of programs for analysis
entually GCG became commercial (http://www.gcg.com/).
omputer programs for sequence analysis, including Intelli-
p appeared at approximately the same time. Laboratories
programs on a no-cost or low-cost basis. For example,
programs PHRED (Ewing and Green 1998; Ewing et
by Phil Green and colleagues at the University of
essing sequencing data. PHRED and PHRAP are
ttp://www.codoncode.com).

s are still widely used. In addition, Web
ace analyses; they are free to academic
ercial users. Following is a brief

Because

These commerg
sites are availablg
institutions or
review of the

EQUENCES

d for comparing two
ne sequence writ-

nce positions on the graph (Fig. 1.2). The resultin
1es of do i i i

, or a string of the same
can also be compared in this manner

ite readily reveals the presence of insertions or deletions
ecause they shift the diagonal horizontally or vertically by the amount
omparing a single sequence to itself can reveal the presence of a repeat of the
sequence in the same (direct repeat) or reverse (inverted repeat or palindrome) ori-
entation. This method of self-comparison can reveal several features, such as similarity
between chromosomes, tandem genes, repeated domains in a protein sequence, regions of
low sequence complexity where the same characters are often repeated, or self-comple-
mentary sequences in RNA that can potentially base-pair to give a double-stranded struc-
ture. Because diagonals may not always be apparent on the graph due to weak similarity,
Gibbs and McIntyre counted all possible diagonals and these counts were compared to
those of random sequences to identify the most significant alignments.

Maizel and Lenk (1981) later developed various filtering and color display schemes that
greatly increased the usefulness of the dot matrix method. This dot matrix representation
of sequence comparisons continues to play an important role in analysis of DNA and pro-
tein sequence similarity, as well as repeats in genes and very long chromosomal sequences,
as described in Chapter 3 (p. 59).
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Figure 1.2. A simple dot matrix comparison of two DNA sequences, AGCTAGGA and GACTAG-
GC. The diagonal of dots reveals a run of similar sequence CTAGG in the two sequences.

ALIGNMENT ENCES BY

Although the dot
readily resolve sig
are present in g

sequence similarity, it does not
do not match very well or that
deletions). Therefore, one
ous path through a dot
optimal alignment, between
ing the sequences on suc-
e same column and
gext to a gap as an
find an optimal
pnsidered to

ters placed in the same column &
cletion in the other sequence), as sho

g two amino acids at a time. They start-
moved ahead one amino acid pair at a time, allow-
of matched pairs, mismatched pairs, or extra amino acids in
tion or deletion). In computer science, this approach is called dynam-
ming. The Needleman and Wunsch approach generated (1) every possible
nment, each one including every possible combination of match, mismatch, and single
insertion or deletion, and (2) a scoring system to score the alignment. The object was to
determine which was the best alignment of all by determining the highest score. Thus,
every match in a trial alignment was given a score of 1, every mismatch a score of 0, and
individual gaps a penalty score. These numbers were then added across the alignment to

SEQUENCEA A G A A C D E V | G

SEQUENCEB A G E Y C D A | | G

Figure 1.3. An alignment of two sequences showing matches, mismatches, and gaps (A). The best
or optimal alignment requires that all three types of changes be allowed.
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obtain a total score for the alignment. The alignment with the highest possible score was
defined asjthe optimal alignment.

ure for generating all of the possible alignments is to move sequentially
he matched positions within a matrix, much like the dot matrix graph (see
at those positions that correspond to the end of one of the sequences, as
4. At each position in the matrix, the highest possible score that can be
point is placed in that position, allowing for all possible starting points
d any combination of matches, mismatches, insertions, and deletions.
ound by finding the highest-scoring position in the graph, and then
through the path that generated the highest-scoring posi-
igned so that the sequence characters corresponding to this

1 5 (rmervss gan pensity)
Deduced sigrement with gap A

G AT C T A
a AT G A A

Figure 1.4. Simplified example of Needleman-Wunsch alignment of sequences GATCTA and
GATCA. First, all matches in the two sequences are given a score of 1, and mismatches a score of 0
(not shown), chosen arbitrarily for this example. Second, the diagonal 1s are added sequentially, in
this case to a total score of 4. At this point the row cannot be extended by another match of 1 to a
total score of 5. However, an extension is possible if a gap is placed in GATCA to produce
GATC A A, where A is the gap. To add the gap, a penalty score is subtracted from the total match
score of 5 now appearing in the last row and column. The best alignment is found starting with the
sequence characters that correspond to the highest number and tracing back through the positions
that contributed to this highest score.
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FINDING LOCAL ALIGNMENTS BETWEEN SEQUENCES

- The abo
entirety
Water

ethod finds the optimal alignment between two sequences, including the
of the sequences. Such an alignment is called a global alignment. Smith and
la,b) recognized that the most biologically significant regions in DNA and
protei were subregions that align well and that the remaining regions made up
of leg ences were less significant. Therefore, they developed an important
mog eedleman-Wunsch algorithm, called the local alignment or Smith-
Wa atermah-Smith) algorithm, to locate such regions. They also recog-
nj S orfftle s of any size are likely to be found as evolutionary changes
1sted their method to accommodate such changes. Finally,
of that the dynamic programming method is guaranteed
petween sequences. The algorithm is discussed in detail

>
o

Mike Waterman 11 here
athemal

optimal aj
3 (p. 64).
plementay
es, a similarif
of aligned pai
smatches, and a
scoring system of
in the aligned se
matches (gaps a \
most familiar d was dé
and Waterma scoring met hat adds up the number of
substitutiong p change one seq ger. This score is most useful for
Atices bé proteins to be used for phy-

predictions, and the work of mathematicians,
he distance score is usually puming the number of
an alignment divided by the total nul ad mismatches. The
calcu epresents the number of changes requi guence into the
othegignoring gaps. Thus, in the example shown in Fi§ atches and 1
migiwatch in an alignment. The similarity score for the alig d the dis-
tghce score is 1/7 = i i ition is given plc score of 1. With this
i es add up to 1. Note also the equiv-
s 1s equal to twice the number of matches plus
eletions or insertions. Thus, in our example, the calcula-
+ 1) + 3 = 17. Usually more complex systems of scoring are used
eaningful alignments, and alignments are evaluated by likelihood or odds
Chapter 3), but an inverse relationship between similarity and distance scores for
the alignment still holds.

A difficult problem encountered in aligning sequences is deciding whether or not a par-
ticular alignment is significant. Does a particular alignment score reveal similarity between
two sequences, or would the score be just as easily found between two unrelated sequences
(or random sequence of similar composition generated by the computer)? This problem
was addressed by S. Karlin and S. Altschul (1990, 1993) and is addressed in detail in Chap-
ter 3 (p. 96).

An analysis of scores of unrelated or random sequences revealed that the scores could
frequently achieve a value much higher than expected in a normal distribution. Rather, the
scores followed a distribution with a positively skewed tail, known as the extreme value dis-
tribution. This analysis provided a way to assess the probability that a score found between
two sequences could also be found in an alignment of unrelated or random sequences of

ts had been devised for scoring an alignment of two
ance score. As shown in Figure 1.3, there are three
h column of an alignment—identical matches,
ed character. Using as an example a simple
ilarity score adds up all of the matches
of the number of matches and mis-
ing sequence similarity is the one
nd Wunsch and used by Smith

Temple ed)
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the same length. This discovery was particularly useful for assessing matches between a
query sequénce and a sequence database discussed in Chapter 7. In this case, the evalua-
tion of a icular alignment score must take into account the number of sequence com-
in searching the database. Thus, if a score between a query protein sequence
rotein sequence is achieved with a probability of 10~7 of being between
es, and 80,000 sequences were compared, then the highest expected
PECT score) is 1077 X 8 X 10* = 8 X 1072 = 0.008. A value of
ed significant. Even when such a score is found, the alignment must
or shgrtness of the alignment, unrealistic amino acid matches, and

cid§ithe presence of which decreases confidence in an alignment.

MULTIPLE SEQU

pces, methods have been developed for aligning three
an early example, see Johnson and Doolittle 1986).
ad usually are based on a sequential aligning of
ams commonly used are the GCG program
' (Thompson et al. 1994) (Baylor College
Iti-align/multi-align.html). Once the
amily) has been produced, highly
that may be common to that
s of the same family. Two
called a PROFILE and a
portant computational tools

of Medicine, http
alignment of a
conserved regiq
particular fa
matrix repre

gvolutionary modeling.
most probable phy-
is identified.

a set of DNA

¢ alignments can also be the st
aligned sequence characters is exa
0geng ationship or tree that would give rise to tk
Ag form of multiple sequence alignment is to sea

or potein sequences has in common without first aligning al. 1982;
Stérmo and Hartzell 1989; Staden 1984, 1989; I awrence and 0). For proteins, these
Hatbe sttral or functional domain. For DNA

ding site for a regulatory protein in a promoter

RNA molecule. Both statistical and nonstatistical methods

PH0r this purpose. In effect, these methods sort through the sequences

¢ a series of adjacent characters in each of the sequences that, when aligned,

dcs the highest number of matches. Neural networks, hidden Markov models, and the

expectation maximization and Gibbs sampling methods (Stormo et al. 1982; Lawrence et al.

1993; Krogh et al. 1994; Eddy et al. 1995) are examples of methods that are used. Explana-
tions and examples of these methods are described in Chapter 4.

PREDICTION OF RNA SECONDARY STRUCTURE

In addition to methods for predicting protein structure, other methods for predicting
RNA secondary structure on computers were also developed at an early time. If the com-
plement of a sequence on an RNA molecule is repeated down the sequence in the opposite
chemical direction, the regions may base-pair and form a hairpin structure, as illustrated
in Figure 1.5.
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—IGGCUGACCUGL CAGGUCAGCCL

|
\\\\GGCUGACCUG

CCGACUGGAC
M

Figure 1.5. Folding of single-stranded RNA molecule into a hairpin secondary structure. Shown are
portions of the sequence that are complementary: They can base-pair to form a double-stranded
region. G/C base pairs are the most energetic due to 3 H bonds; A/U and G/U are next most ener-
getic with two and one H bonds, respectively.

p et al. (197
es and tried tq
th stacked base

g symmetrical regions in small oligonucleotide
based on estimates of the free energy associat-
the destabilizing effects of loops, using a
ble of energy val 978). Single-stranded loops and other
npaired regions ¢ 1 bsequently, Nussinov and Jacobson
(1980) devised a fi eth . RNA molecule with the highest
possible number based 0 programming algorithm used
for aligning seg § method wa and Stiegler (1981), who
added molec ts and thermod tion to predict the most ener-

onstruction of databases
somal RNA database
me.msu.edu/RDP

RNA structure mod
~One of the most significant of
he laboratory of C. Woese (198

ml/i 1). RNA secondary structure predictio pter 5. Align-
ment tural modeling, and phylogenetic analysis ba ences have
mad@ipossible the discovery of evolutionary relationship would
noghave been possi i

DISCOVERY OF PS USING SEQUENCES

1n a family of related nucleic acid or protein sequences provide an invalu-
urce of information for evolutionary biology. With the wealth of sequence infor-
mation becoming available, it is possible to track ancient genes, such as ribosomal RNA
and some proteins, back through the tree of life and to discover new organisms based on
their sequence (Barns et al. 1996). Diverse genes may follow different evolutionary histo-
ries, reflecting transfers of genetic material between species. Other types of phylogenetic
analyses can be used to identify genes within a family that are related by evolutionary
descent, called orthologs. Gene duplication events create two copies of a gene, called par-
alogs, and many such events can create a family of genes, each with a slightly altered, or
possibly new, function. Once alignments have been produced and alignment scores found,
the most closely related sequence pairs become apparent and may be placed in the outer
branches of an evolutionary tree, as shown for sequences A and B in Figure 1.1 (p. 2). The
next most-alike sequence, sequence C in Figure 1.1, will be represented by the next branch
down on the tree. Continuing this process generates a predicted pattern of evolution for
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that particylar gene. Once a tree has been found, the sequence changes that have taken
ree branches can be inferred.

point for making a phylogenetic tree is a sequence alignment. For each pair
e sequence similarity score gives an indication as to which sequences are
ted. A tree that best accounts for the numbers of changes (distances)
nces (Fitch and Margoliash 1987) of these scores may then be derived.
ommonly used for this purpose is the neighbor-joining method (Saitou
ibed in Chapter 6. Alternatively, if a reliable multiple sequence align-
is most consistent with the observed variation found in each
ent may be used. The tree that imposes the minimum num-
arsimony tree) is the one chosen (Felsenstein 1988).
tions, one must consider the possibility that several trees
. Tests of significance have therefore been derived to
variation supports the existence of a particular tree
lopments are also discussed in Chapter 6.

IMPORTAN AR SEQUENCES

As DNA sequenci activity, genes with an important bio-
logical function cet earning something about the bio-
chemical natur produc g retrovirus-encoded v-sis and
V-Src 0ncogeng ause cance ing the predicted sequences
of the viral p all of the know Ces at the time, R. Doolittle and
»Dayho made the startling discovery
¢ derived from cell® is protein had a sequence
at of the platelet-derived growt om mammalian cells,
atalytic chain of mammalian cAMP Thus, it appeared
ikely e retrovirus had acquired the gene from ind of genetic
exc event and then had produced a mutant form d compro-
miseifhe function of the normal protein when the virus Subse-
tly, as molecular biologists analyzed more and more gé guaences, they discovered
dentified by their sequence similarity.
ated by having genetic and biochemical informa-
as the bacterium Escherichia coli and the budding yeast Sac-
ese organisms, extensive genetic analysis has revealed the function
e sequences of these genes have also been determined. Finding a gene in a new
m (e.g., a crop plant) with a sequence similar to a model organism gene (e.g., yeast)
provides a prediction that the new gene has the same function as in the model organism.
Such searches are becoming quite commonplace and are greatly facilitated by programs such
as FASTA (Pearson and Lipman 1988) and BLAST (Altschul et al. 1990).
The methods used by BLAST and other additional powerful methods to perform
sequence similarity searching are described further in the next section and in Chapter 7.

THE FASTA AND BLAST METHODS FOR DATABASE SEARCHES

As the number of new sequences collected in the laboratory increased, there was also an
increased need for computer programs that provided a way to compare these new
sequences sequentially to each sequence in the existing database of sequences, as was done
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PORTION OF SEQUENCE A - - W 1l Vv - -
PORTION OF SEQUENCE B - - W 1l Vv - -

Figure 1.6. Rapid identification of sequence similarity by FASTA and BLAST. FASTA looks for
short regions in these two amino acid sequences that match and then tries to extend the alignment
to the right and left. In this case, the program found by a quick and simple indexing method that
W, 1, and then V occurred in the same order in both sequences, providing a good starting point for
an alignment. BLAST works similarly, but only examines matched patterns of length 3 of the more
significant amino acid substitutions that are expected to align less frequently by chance alone.

sfully hction of viral oncogenes. The dynamic programming
eman af h would not work because it was much too slow for the
e time; tq ever, with much faster computers available, this method
. Pearso pnan (1988) developed a program called FASTA, which
a database § ity in a short enough time to make such scans rou-
pssible. FAST  way to find short stretches of similar sequence
®n a new sequg e in a database. Each sequence is broken down
Y short words a fg o, and these words are organized into a table
dicating where e or more words are present in both
sequences, and es 2 ned, the sequences must be similar in
those regions. Pe 996) prove the FASTA method for sim-
ilarity searches j atabases.
An even fag for similarit 2 databases, called BLAST,
was develope ul et al. (1990)" widely used from the Web site
FInfor N ational Library of Medicine
BLAST server is probably
ides similarity search-
a table of short
ds are most sig-

Bill Pearso

www.ncbi.nlm.nih.go
cd sequence analysis facility in t
*ntly available sequences. Like FAST
sequen ds in each sequence, but it also determine
nific tich that they are a good indicator of similarity d then con-
fingS¥he search to these words (and related ones), as descr are ver-
sighs of BLAST i ic aci in datapas ich can be used to
rotein sequence databases (Altschul
include GAPPED-BLAST, which is threefold
ut which appears to find as many matches in databases,
on-specific-iterated BLAST), which can find more distant matches
1n sequence by repeatedly searching for additional sequences that match an
ent of the query and initially matched sequences. These methods are discussed in

PREDICTING THE SEQUENCE OF A PROTEIN BY TRANSLATION OF DNA SEQUENCES

Protein sequences are predicted by translating DNA sequences that are cDNA copies of
mRNA sequences from a predicted start and end of an open reading frame. Unfortunate-
ly, cDNA sequences are much less prevalent than genomic sequences in the databases. Par-
tial sequence (expressed sequence tags, or ESTs) libraries for many organisms are available,
but these only provide a fraction of the carboxy-terminal end of the protein sequence and
usually only have about 99% accuracy. For organisms that have few or no introns in their
genomic DNA (such as bacterial genomes), the genomic DNA may be translated. For most
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eukaryotic prganisms with introns in their genes, the protein-encoding exons must be pre-
dicted andfthen translated by methods described in Chapter 8. These genome-based pre-
dictions ot always accurate, and thus it remains important to have cDNA sequences
of protei ding genes. Promoter sequences in genomes may also be analyzed for com-
mon p at reflect common regulatory features. These types of analyses require
sophis oaches that are also discussed in Chapter 8 (Hertz et al. 1990).

PREDICTING PROTE Y STRUCTURE

oteins whose sequences are known, but very few whose
ing protein structures involves the time-consuming and
-ray crystallography and nuclear magnetic resonance
interest in trying to predict the structure of a protein,
esized as linear chains of amino acids; they then form
ch as o helices, as a result of interactions between
gion of the molecule with these secondary struc-
orm tertiary structures that include a helices,
oops (Fig. 1.7). This folding often leaves
ito the interior of the folded molecule
d the molecular environment facing
directs the folding pathway,
asman (1978) and Garnier
or the amino acids associ-
ns, and 3 strands. Sequences

¢ not known wé d to determine whether the
egion were those often ass e type of structure. For
1no acid proline is not often found ¢ its side chain is not
ompa vith forming a helix. This method pred of some proteins
well | general, was about as likely to predict a co cture.
ASimore protein structures were solved experimenta hods were
used to find those that had a similar structural fold (the s3 gemment of secondary
3 &d to the discovery that as new
often had a structural fold that was already
s, proteins are found to have a limited number of ~500
aps due to chemical restraints on protein folding or to the exis-

structures 3

then folds ba
sheets comprisi
amino acids with
and polar aming
outside in loop
sometimes ass
et al. (1978) g

Polypentide chain Secondarny struciures siohs
helices, beta shesta ete.

Figure 1.7. Folding of a protein from a linear chain of amino acids to a three-dimensional structure.
The folding pathway involves amino acid interactions. Many different amino acid patterns are found
in the same types of folds, thus making structure prediction from amino acid sequence a difficult
undertaking.
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tence of a single evolutionary pathway for protein structure (Gibrat et al. 1996). Further-
more, protgilis without any sequence similarity could adopt the same fold, thus greatly
complicatiy e prediction of structure from sequence. Methods for finding whether or
not a give tein sequence can occupy the same three-dimensional conformation as
another b the properties of the amino acids have been devised (Bowie et al. 1991).
Databasg ural families of proteins are available on the Web and are described in
Chapte
A och et al. 1997) developed another method for predicting the bio-
che unkngwn protein, given its sequence. He collected sequences of
pro nonfBiochemical activity, for example an ATP-binding site, and
ded of a ds that was responsible for that activity, allowing for some
\C: dattern pllected into the PROSITE database (http://www.expasy.
C own se( ere scanned for the same patterns. Subsequently, Steve
ikoff (Hexn enikoff 1992) examined alignments of the protein
at make up and discovered additional patterns in the aligned
called BLOQ .blocks.thcrc.org/). These patterns offered an
d ability to de not an unknown protein possessed a particular
emical activity. ) each column of these aligned patterns were
ted and a new s, matrices, called BLOSUM matrices, sim-
ar to the PAM A ere produced. One of these matrices,
BLOSUMBS62, is mg Ja. ences and searching databases for
similar sequences d Hen er 7).

Sophisticated d machine e been used in more recent
protein struc On programs, as increased. A recent
ad e ir eld o h 1656 pteins into groups or families
»and to find cd ns of amino acid domains
ilies using the statistical gd in Chapters 4 and 9.
publicly accessible Web sites describ hat provide the lat-
identifying proteins and predicting t

RST COMPLETE*GENOME SEQUENCE

A _

e first planned attempt to sequence
r and colleagues (Blattner et al. 1997) using the
re was some concern over whether such a large sequence,
be obtained by the then-current sequencing technology. The first
ome sequence was that of the single, circular chromosome of another bac-
, Hemophilus influenzae (Fleischmann et al. 1995), by The Institute of Genetics
Research (TIGR, at http://www.tigr.org/), which had been started by researcher Craig Ven-
ter. The project was assisted by microbiologist Hamilton Smith, who had worked with this
organism for many years. The speedup in sequencing involved using automated reading of
DNA sequencing gels through dye-labeling of bases, and breaking down the chromosome
into random fragments and sequencing these fragments as rapidly as possible without
knowledge of their location in the whole chromosome. Computer analysis of such shotgun
cloning and sequencing techniques had been developed much earlier by R. Staden at Cam-
bridge University and other workers, but the TIGR undertaking was much more ambi-
tious. In this genome project, newly read sequences were immediately entered into a com-
puter database and compared with each other to find overlaps and produce contigs of two
or more sequences with the assistance of computer programs. This procedure circumvent-
ed the need to grow and keep track of large numbers of subclones. Although the same
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sequence was often obtained up to 10 times, the sequence of the entire chromosome (2 X
10° bp), leg8ha few gaps, was rapidly assembled in the computer over a 9-month period at
a cost of $10°.

heralded a large number of other sequencing projects of various prokary-
tic microorganisms, with a tremendous potential payoff in terms of uti-
cts and evolutionary information about these organisms. To date, com-
ude more than 30 prokaryotes, yeast S. cerevisiae (see Cherry et al.
aenorhabditis elegans (see C. elegans Sequencing Consortium 1998),
ila (gee Adams et al. 2000). The plant Arabidopsis thaliana and the
ensingProjects are ongoing and will be completed during 2000 or

The Human Genome Project, a large, federally funded collaborative project, will com-
plete sequencing of the entire human genome by 2003. The project was developed from
an idea discussed at scientific meetings in 1984 and 1985, and a pilot project, the
Human Genome Initiative, was begun by the Department of Energy (DOE) in 1986.
National Institutes of Health funding of the project began in 1987 under the Office of
Genome Research. Currently, the project is constituted as the National Human
Genome Research Initiative. In 1998, a new commercial venture under the leadership
of Craig Venter was formed to sequence the majority of the human genome by 2001.
This group, which uses a whole genome shotgun cloning approach and intensive com-
puter processing of data, has already completed the Drosophila sequence and will
sequence the mouse genome following completion of the human genome. Both groups
simultaneously announced completion of the sequencing of the human genome in
2000.

DATABASE

re genetic and sequence information became avai
erest i i

e queried to retrieve this
evel of sharing of data and resources
ere initial concerns about copyright issues, credits,
curating, eventually these concerns disappeared or became
s on the Internet developed. The first genome database, called ACEDB
s database), and the methods to access this database were developed by Mike
rry and colleagues (Cherry and Cartinhour 1993). This database was accessible
through the internet and allowed retrieval of sequences, information about genes and
mutants, investigator addresses, and references. Similar databases were subsequently
developed using the same methods for A. thaliana and S. cerevisiae. Presently, there is a
large number of such publicly available databases. Web access to these databases is dis-
cussed in Chapter 10 (Table 10.1, p. 482).
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THIS CHABRER SUMMARIZES METHODS used to collect sequences of DNA molecules and
computer files. Once in the computer, the sequences can be analyzed by a
ds. Additionally, assembly of the sequences of large molecules from short
ts can readily be undertaken. Assembled sequences are stored in a com-
ith identifying features, such as DNA source (organism), gene name, and
ces and accessory information are then entered into a database. This
hem so that specific ones can be retrieved by a database query pro-
e. Unfortunately, most sequence analysis programs require that the
e file be stored in a particular format. To use these programs, it is

DNA SEQUENCI

ask in the molecular biology laboratory. Purified
ones or amplified by polymerase chain reac-
ad one of the strands is hybridized to an
e, new strands of DNA are synthesized
merase from a pool of deoxyribonu-
int of one of four chain-termi-
esulting synthesis creates a
e sequence through the
igure 2.1. A similar set of frag-
abeled with a different fluo-

presed to separate the
pce of each of the

Figure 2.1. Method used to synthesize a nested set of DNA fragments, each ending at a base position
complementary to one of the bases in the template sequence. To the left is a double-stranded DNA
molecule several kilobases in length. After denaturation, the DNA is annealed to a short primer oligonu-
cleotide primer (black arrow), which is complementary to an already sequenced region on the molecule.
New DNA is then synthesized in the presence of a fluorescently labeled chain-terminating ddN'TP or one
of the four bases. The reactions produce a nested set of labeled molecules. The resulting fragments are sep-
arated in order by length to give the sequence display shown in Fig. 2.2.
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1
91
181
271
361
451
541
631
721
811
901

CGTCGTACAA
GAAGAAAATC
ATGCTAATAC
TTCTCCACAT
GAACATACAA
TACATTGGGA
AGCCGGATCA
ACTTTCTTAT
TTTTCATTCA
TTGANACAGA
TGNTAATTTT

TTTAGGTTAT
AATATGGGAA
TGGGGAARAT
GACTTTTTTT
AACGTTGAAG
ACAAAATTGA
TGGAAATAGG
CGCCATTGCT
TTTGGTACTA
AACTATCATC
NGGNAAATGA

GTGCGAATTC
ACGGTAATGG
GTTGATGTTT
ATTTATTAGG
ATTACTATGA
AATAGAATTT
CCTTTGTGGG
GAACCCGTTT
TTTCAGGCCT
TCTGGTTTGA
AATTGGGNTT

ACAAATTGAA
TCTCGAATCT
AGATGAAAGA
CTCTTCACTT
TGATGCTGAT
ATAATGGTTT
CTTGTGCTGA
GCAGGTTTGA
GANTCAATGC
ATAANCTNTC
TGAAAAAAAA

AATACAAGAG
CGATCGTACT
AAACGACCTA
CTAGTTAGTG
GAGGATTCTC
TTAAAGGTGA
TGGAAAGATT
TTTTGATTTG
CCNAGTTTAA
TAAGAACCAG
TCGGN

ARACAATCCC
GAGTTTTGAT
CAAAGAAGAT
TAATTGTACT
GTGATGGTAA
AGGAGAGGAG
TTCTTGGAGA
ATTATTATAT
TTAACCCCAC
CTTNCCCGGG

TAAAATCGAT
TCGTTTATTG
GAAGTACGGT
GTAAAAATCT
TATTGATTAC
AAGAGGAGAG
CATTTTCTCC
CAATGTNAAG
ACTCGTTGNA
GAGATCATTG

TTGATTAAGA
AATTATCCGG
GGGAAGGTTC
CAGGATGATC
TCTCGTATAA
ATTTTACTGA
TCTCTATAAA
TTATGATTTT
TGCTGCTGTT
GATTNAATNC

GGAGCGAAAA
TGAAAAGAGT
GTGTTGATTC
AAAAGATGAA
TTAACATAGA
TTTGAGTTGA
CAAGCTTATG
TGGTGGTGGA
TCCTTTGGTC
ATGCTTNTAC

Figure 2.2. Example of a DNA sequence obtained on an ABI-Prism 377 automated sequencer. The target DNA is denatured by heating and then annealed
to a specific primer. Sequencing reactions are carried out in a single tube containing Amplitaq (Perkin-Elmer), dNTPs, and four ddNTPs, each base labeled
with a different fluorescent dichloro-rhodamine dye. The polymerase extends synthesis from the primer, until a ddNTP is incorporated instead of ANTP,
terminating the molecule. The denaturing, reannealing, and synthesis steps are recycled up to 25 times, excess labeled ddNTPs are removed, and the
remaining products are electrophoresed on one lane of a polyacrylamide gel. As the bands move down the gel, the rhodamine dyes are excited by a laser
within the sequencer. Each of the four ddNTP types emits light at a different wavelength band that is detected by a digital camera. The sequence of changes
is plotted as shown in the figure and the sequence is read by a base-calling algorithm. More recently developed machines allow sequencing of 96 samples
at a time by capillary electrophoresis using more automated procedures. The accuracy and reliability of high-throughput sequencing have been much
improved by the development of the PHRED, PHRAP, and CONSED system for base-calling, sequence assembly, and assembled sequence editing (Ewing

and Green 1998; Gordon et al. 1998).
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Figure 2.3. Sequential sequencing of a DNA molecule using oligonucleotide primers. One of the
denatured template DNA strands is primed for sequencing by an oligonucleotide (yellow) comple-
mentary to a known sequence on the molecule. The resulting sequence may then be used to pro-
duce two more oligonucleotide primers downstream in the sequence, one to sequence more of the
same strand (purple) and a second (turquoise) that hybridizes to the complementary strand and pro-
duces a sequence running backward on this strand, thus providing a way to confirm the first
sequence obtained.

ence, and the sequence may then be edited manu-
aking an oligonucleotide primer complemen-
e and using it to obtain the sequence of the
mplate. The first sequence can also be
tching the distal end of the readable
iginal template. When the process is
obtain sequencing results that
e. By repeating this proce-
th can be sequenced

fully automated,
give optimal sep,

0osomes are

s, to produce an integrated map of
undancy may be required to build a consensus
an have rearrangements, deletions, or two separate frag-
eflect the correct map and have to be eliminated. Once the correct
obtained, unique overlapping clones are chosen for sequencing. However,
olecules are too large for direct sequencing. One procedure for sequencing these
clones is to subclone them further into smaller fragments that are of sizes suitable for
sequencing, make a map of these clones, and then sequence overlapping clones (Fig. 2.4).
However, this method is expensive because it requires a great deal of time to keep track of
all the subclones.

An alternative method is to sequence all the subclones, produce a computer database of
the sequences, and then have the computer assemble the sequences from the overlaps that
are found. Up to 10 levels of redundancy are used to get around the problem of a small
fraction of abnormal clones. This procedure was first used to obtain the sequence of the 4-
Mb chromosome of the bacterium Haemophilus influenzae by The Institute of Genetics
Research (TIGR) team (Fleischmann et al. 1995). Only a few regions could not be joined
because of a problem subcloning those regions into plasmids, requiring manual sequenc-
ing of these regions from another library of phage subclones.
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Map fragments = =

fragments

Sequence overlapping
Sequence all fragments
— and assemble

Assembled
sequence

Figure 2.4. Methods for large-scale sequencing. A large DNA molecule 100 kb to several megabas-
es in size is randomly sheared and cloned into a cloning vector. In one method, a map of various-
sized fragments is first made, overlapping fragments are identified, and these are sequenced. In a
faster method that is computationally intense, fragments in different size ranges are placed in vec-
tors, and their ends are sequenced. Fragments are sequenced without knowledge of their chromoso-
mal location, and the sequence of the large parent molecule is assembled from any overlaps found.
As more and more fragments are sequenced, there are enough overlaps to cover most of the
sequence.

Shotgun Sequencing

A controversy has arisen as to whether or not the above shotgun sequencing strategy
can be applied to genomes with repetitive sequences such as those likely to be
encountered in sequencing the human genome (Green 1997; Myers 1997). When
DNA fragments derived from different chromosomal regions have repeats of the
same sequence, they will appear to overlap. In a new whole shotgun approach, Cel-
era Genomics is sequencing both ends of DNA fragments of short (2 kb), medium
(10 kb), and long (BAC or ~100 kb) lengths. A large number of reads are then
assembled by computer. This method has been used to assemble the genome of the
fruit fly Drosophila melanogaster after removal of the most highly repetitive regions
(Myers et al. 2000) and also to assemble a significant proportion of the human
genome.

SEQUENCING cDNA LIBRARIES OF EXPRESSED GENES

Two common goals in sequence analysis are to identify sequences that encode proteins,
which determine all cellular metabolism, and to discover sequences that regulate the
expression of genes or other cellular processes. Genomic sequencing as described above
meets both goals. However, only a small percentage of the genomic sequence of many
organisms actually encodes proteins because of the presence of introns within coding
regions and other noncoding regions in the genome. Although there has been a great deal
of progress in developing computational methods for analyzing genomic sequences and
finding these protein-encoding regions (see Chapter 8), these methods are not completely
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reliable and, furthermore, such genomic sequences are often not available. Therefore,
cDNA librafiés have been prepared that have the same sequences as the mRNA molecules
produced ganisms, or else cDNA copies are sequenced directly by RT-PCR (copying
of mRNA erse transcriptase followed by sequencing of the cDNA copy by the poly-
merase ¢ tion). By using cDNA sequence with the introns removed, it is much
simpler otein-encoding sequences in these molecules. The only possible diffi-
interest may be developmentally expressed or regulated in such a way
present. This problem has been circumvented by pooling mRNA
s that express a large proportion of the genome, from a variety of
r from organisms subjected to several environmental influ-
nt for computational purposes was the decision by Craig
artial sequences of the expressed genes, called expressed
just enough DNA sequence to give a pretty good idea
ted sequence can then be compared to a database of
ding a strong similarity to a protein of known func-
f the cloned EST. The corresponding cDNA clone
and the gene completely sequenced.

SUBMISSI

ined sequences directly to a
llaboration, such as the
, which manages GenBank
k of Japan (DDBJ;
Laboratory (EMBL)/EBI
NCBI reviews new
d number, which is
publish the sequence, is provided. New s ed daily by the
MBL, and DDBJ databases.

as mRNA start and coding regions.

ehBank format and returned to the submitter
enBank. The other method of submission is to use
d" Authorin), which runs on personal computers and UNIX
program provides an easy-to-use graphic interface and can manage large
1ons such as genomic sequence information. It is described and demonstrated on
ttp://www.ncbi.nlm.nih.gov/Sequin/index.html and may be obtained by anonymous FTP
from ncbi.nlm.nih.gov/sequin/. Completed files can also be E-mailed to gb-
sub@ncbi.nlm.nih.gov or can be mailed on diskette to GenBank Submissions, National
Center for Biotechnology Information, National Library of Medicine, Bldg. 38A, Room
8N-803, Bethesda, Maryland 20894.

SEQUENCE ACCURACY

It should be apparent from the above description of sequencing projects that the higher the
level of accuracy required in DNA sequences, the more time-consuming and expensive the
procedure. There is no detailed check of sequence accuracy prior to submission to GenBank
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and other databases. Often, a sequence is submitted at the time of publication of the
sequence in @journal article, providing a certain level of checking by the editorial peer-
owever, many sequences are submitted without being published or prior
laboratories performing large sequencing projects, such as those engaged
ome Project or the genome projects of model organisms, the granting
agency re tain level of accuracy of the order of 1 possible error per 10 kb. This
uld be sufficient for most sequence analysis applications such as

g incorrectly identified bases and inserted or deleted bases.
es in GenBank and other databases, incorrect bases may

uence, thus making alignment with a protein sequence
ase sequence that is error-prone is a fragment of
nt of a pathogenic organism, such as the regions in
eficiency virus (HIV). Although this low level of
uch as identification, for more detailed analy-
uch sequence fragments should be verified.

Is important to ensure that
pecial characters used
can introduce such changes
s (those on the typewrit-
control characters in
nly be recognized

ASCII and Hexadecimal

Computers store sequence information as simple rows of sequence characters called
strings, which are similar to the sequences shown on the computer terminal. Each
character is stored in binary code in the smallest unit of memory, called a byte. Each
byte comprises 8 bits, with each bit having a possible value of 0 or 1, producing 255
possible combinations. By convention, many of these combinations have a specific
definition, called their ASCII equivalent. Some ASCII values are defined as keyboard
characters, others as special control characters, such as signaling the end of a line (a
line feed and a carriage return), or the end of a file full of text (end-of-file character).
A file with only ASCII characters is called an ASCII file. For convenience, all binary
values may be written in a hexadecimal format, which corresponds to our decimal
format 0, 1,...... 9 plus the letters A, B, . . . . F. Thus, hexadecimal OF corresponds
to binary 0000 1111 and decimal 15, and FF corresponds to binary 1111 1111 and
decimal 255. A DNA sequence is usually stored and read in the computer as a series
of 8-bit words in this binary format. A protein sequence appears as a series of 8-bit
words comprising the corresponding binary form of the amino acid letters.
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Sequence and other data files that contain non-ASCII characters also may not be transferred
correctly frofone machine to another and may cause unpredictable behavior of the commu-
nications s re. Some communications software can be set to ignore such control charac-
the file transfer program (FTP) has ASCII and binary modes, which may be
ASCII mode is useful for transferring text files, and the binary mode is use-
ompressed data files, which also contain non-ASCII characters.
lysis programs also require not only that a DNA or protein sequence
IT file, but also that the file be in a particular format such as the
e use of windows on a computer has simplified such prob-
opy a sequence from one window, for example, a window
on the ENTREZ Web site, and paste it into another, for

ur base symbols, A, T, G, and C, the Nomenclature
n of Biochemistry has established a standard code to
nce that are uncertain or ambiguous. The codes are

ore convenient to use single-letter than three-
DNA sequence entries contain a translat-
ingle-letter amino acid code was estab-
wn in Table 2.2. When the name of
at letter is used, e.g., C, cysteine.
arginine) or close by in the

equence in sin
ed by a joint i
only one amino
In other cases,
alphabet (K, ly,

Base—nucleic acid codes

le 2.1.

Meaning

G
A

pYrimidine

AorC aMino
GorT Keto
CorG Strong interactions
3 h bonds
AorT Weak interactions
2 h bonds
H A, CorT H follows G in
not G alphabet
B C GorT B follows A in
not A alphabet
A% A, Cor G V follows U in
not T (not U) alphabet
D A,GorT D follows C in
not C alphabet
N ACGorT Any base

Adapted from NC-IUB (1984).
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Table 2,2. Table of standard amino acid code letters

3-letter code

Amino acid

Ala
Cys
Asp
Glu

alanine
cysteine
aspartic acid
glutamic acid

phenylalanine
glycine
histidine
isoleucine
lysine

leucine
methionine
asparagine
proline
glutamine

sequences, they will put a
uld be deleted from the

ormats all are standard ASCII files,
1n characters and words that indicate where dif-
e sequence itself are to be found. The more commonly
are discussed below.

GenBa Sequence Entry

The format of a database entry in GenBank, the NCBI nucleic acid and protein sequence
database, is as follows: Information describing each sequence entry is given, including lit-
erature references, information about the function of the sequence, locations of mRNAs
and coding regions, and positions of important mutations. This information is organized
into fields, each with an identifier, shown as the first text on each line. In some entries,
these identifiers may be abbreviated to two letters, e.g., RF for reference, and some identi-
fiers may have additional subfields. The information provided in these fields is described
in Figure 2.5 and the database organization is described in Figure 2.6. The CDS subfield in
the field FEATURES gives the amino acid sequence, obtained by translation of known and



30 » CHAPTER 2

LOCUS name of locus, length and type of sequence,
classification of organism, data of entry

DEFINITION description of entry

ACCESSION accession numbers of original source

KEYWORDS key words for cross referencing this entry

SOURCE source organism of DNA

ORGANISM description of organism

REFERENCE

COMMENT biological function or database information

FEATURES information about sequence by base position or range of positions
source range of sequence, source organism
misc_signal range of sequence, type of function or signal
mRNA range of sequence, mRNA
CDS range of sequence, protein coding region
intron range of sequence, position of intron
mutation sequence position, change in sequence for mutation

BASE COUNT count of A, C, G, T and other symbols

ORIGIN text indicating start of sequence

1 gaattcgata aatctectggt ttattgtgca gtttatggtt ccaaaatcge
51 atatactcac agcataactg tatatacacc cagggggegg aatgaaagceg
// database symbol for end of sequence

Figure 2.5. GenBank DNA sequence entry.

e-letter words that could be
ence entry is assumed by
and “//”.

nce positions can be located
may be used by the com-
nt should not be mod-
ence format often

computer p,

unt or a sequenc
rify the sequence compositio
programs that also modify the cou
anged for use with sequence analysis so

Accession  Organism Reference  Name Keywords Sequence
no
..123 Escherichia. Medliinel,. LexA S0S regqulon, ATG. .
coli vasea protein repressor,
transcriptional
requlator, ..
..124 Escherichia Medline2,. UmubD S0S regulon,.. GTA..
coli e protein
..125 Saccharomyces. Medline3,. GAL4 transcriptional CAT..
cerevisiae ceeen protein regulator,..
..125 Homo. sapiens Medline4,. gluco- transcriptional TGT..
Caeen corticoid regulator, ..
receptor

Figure 2.6. Organization of the GenBank database and the search procedure used by ENTREZ. In this database format, each
row is another sequence entry and each column another GenBank field. When one sequence entry is retrieved, all of these
fields will be displayed, as in Fig. 2.5. Only a few fields and simple examples are shown for illustration. A search for the term
“SOS regulon and coli” in all fields will find two matching sequences. Finding these sequences is simple because indexes have
been made listing all of the sequences that have any given term, one index for each field. Similarly, a search for transcriptional
regulator will find three sequences.
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European Molecular Biology Laboratory Data Library Format

The Euro
sequence

Molecular Biology Laboratory (EMBL) maintains DNA and protein
ses. The format for each entry in these databases is shown in Figure 2.7. As
tries, a large amount of information describing each sequence entry is
iterature references, information about the function of the sequence,
and coding regions, and positions of important mutations. This infor-
to fields, each with an identifier, shown as the first text on each line.
The thesg fields is explained in Figure 2.7. These identifiers are abbre-
i or reference, and some identifiers may have additional sub-
sumed by computer programs to lie between the identifiers
udes numbers on each line to locate parts of the sequence
checksum value for the sequence may be used by com-
the sequence is complete and accurate. For this reason,
ld usually not be modified except with programs that
ence format is very similar to the GenBank format.
e term ORIGIN in the GenBank format to indi-
does not include the sequence of any trans-
i{ferent entry in the database. This sequence
gce analysis software.

almost identical
that of GenBank.

uence Format

abase is very similar to the
g about the physical and bio-

The format g

omment line
d by a “>” character in the first column follow& gin of the

IDp identification code for sequence in the database

AC accession number giving origin of sequence

DT dates of entry and modification

W key cross-reference words for lookup up this entry

0s, oc source organism

RN, RP, RX, RA, RT, RL literature reference or source

DR i.d. in other databases

cC description of biological function

FH, FT information about sequence by base position or range of positions

source range of sequence, source organism

misc_signal range of sequence, type of function or signal

mRNA range of sequence, mRNA

CDS range of sequence, protein coding region

intron range of sequence, position of intron

mutation sequence position, change in sequence for mutation
SQ count of A, C, G, T and other symbols
gaattcgata aatctctggt ttattgtgca gtttatggtt ccaaaatcgc cttttgetgt 60
atatactcac agcataactg tatatacacc cagggggcgg aatgaaagceg ttaacggeca 120

// symbol to indicate end of sequence

Figure 2.7. EMBL sequence entry format.
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>¥YCZ2_YEAST protein in HMR 3' region
MRAVVIEDGKAVVKEGVPIPELEEGFV
GNPTDWAHIDYKVGPQGSILGCDAAGQ
IVKLGPAVDPKDFSIGDYIYGFIHGSS
VRFPSNGAFAEYSAISTVVAYKSPNEL
KFLGEDVLPAGPVRSLEGAATIPVSLT*

Figure 2.8. FASTA sequence entry format.

andard one-letter symbols; and (3) an optional “*” which
ich may or may not be present. The presence of “*” may
ce correctly by some sequence analysis programs. The
used by sequence analysis software. This format pro-
just the sequence part from one window to another
nonsequence characters within the sequence. The
protein information resource (NBRF) format
line with a “>” character in the first column
second line containing an identification
containing the sequence, as described

ion/Protein e Sequence

at, has been used by the
source (NBRF) and
ed from the PIR
is compact for-
uence, as
signif-
igure 2.9. The first line
-letter code such as P for complete
or 2 to indicate type of sequence, then a semi-
cter unique name for the entry. There is also an essential
| name of the sequence, a hyphen, then the species of origin. In
at, the second line is the start of the sequence and the first line gives the
nce identifier after a “>” sign. The sequence terminates with an asterisk.

>P1l;ILEC

lexA repressor - Escherichia coli
MEKALTARQQEVFDLIRDHISQTGMPPTRAE
TAQRLGFRSPNAAEEHLKALARKGVIEIVS
GASRGIRLLQEEEEGLPLVGRVAAGEPLLA
QOHIEGHYQVDPSLFRKPNADFLLRVSGMSM
KDIGIMDGDLLAVHKTQODVRNGQVVVARID
DEVTVRRLRKKQGNKVELLPENSEFKPIVVD
LRQOSFTIEGLAVGVIRNGDWL

Figure 2.9. NBRF sequence entry format.
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:YEAST protein in HMR 3' region
YCZ2
MKAVVIEDGKAVVKEGVPIPELEEGFV
GNPTDWAHIDYRVGPQGSILGCDAAGQ
IVRLGPAVDPKDFSIGDYIYGFIHGSS
VRFPSNGAFAEYSAISTVVAYKSPNEL
KFLGEDVLPAGPVRSLEGAATIPVSLT1

Figure 2.10. Intelligenetics sequence entry format.

Stanford Universi Format

p at Stanford University, and subsequently continued
grmat is similar to the PIR format (Fig. 2.10), except
the comment line. The identifier on the second
e, a 1 is placed if the sequence is linear, and a

e sequence is

puter Group Se at

Earlier versiq enetics Comp® grams require a unique
sequence fou clude programs tha equence formats into GCG for-
several seq A converted GenBank file is
nformation about thg ae GenBank entry is first
d by a line of information about tk hecksum value. This
v pwn) is provided as a check on the ac e by the addition

of thg I values of the sequence. If the sequencs ged, this value
shodldstay the same. If one or more sequence characte gh error,
a program reading the sequence will be able to determi geias occurred

b€cause the che pe.lo11eer be correct. Lines of infor-
e end of information and the start of
st'of the text in the entry is treated as sequence. Note
ince there is no symbol to indicate end of sequence, no text
e should be added beyond this point. The sequence should not be
cpt by programs that will also adjust the checksum score for the sequence. The
sequence format may have to be changed for use with other sequence analysis soft-
ware. GCG also includes programs for reformatting sequence files.

BASE COQUNT 215 A 224 C 263 G 250 T

ORIGIN

Filename, Length of sequence, Date, Checksum value, ..

1 GAATTCGATA AATCTCTGGT TTATTGTGCA GTTTATGGTT CCAAARATCGC
51 CTPTTGCTGT ATATACTCAC AGCATAACTG TATATACACC CAGGGGGCGG

Figure 2.11. GCG sequence entry format.
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Format of Sequence File Retrieved from the National Biomedical Research
Foundation/Protein Inforfation Resource

The file

t has approximately the same information as a GenBank or EMBL sequence
tted slightly differently, as in Figure 2.12. This format is presently called the

Plain/ASCII.Staden

mputer file that includes only the sequence with no other
ticular format is used by the Staden Sequence Analysis pro-
.ac.uk/pubseq) produced by Roger Staden at Cambridge
he sequence must be further formatted to be used for

ENTRY ILEC

#type complete
TITLE lexA repressor - Escherichia coli
ORGANISM

#formal name Escherichia coli
DATE 29-Jul-1981
#sequence revision 0l1-Sep-1981
#text change 14-Nov-1997
ACCESSIONS A90808; A93734; S11945; B65212; A03569
REFERENCE A90808
#authors Horii, T.; Ogawa, T.; Ogawa, H.
#journal Cell (1981) 23:689-697
#title Nucleotide sequence of the lexA gene of Escherichia coli.
#cross-references MUID:81186269
#contents lexA
#accession AS0808
##molecule_type DNA
##residues 1-202
##label HOR
REFERENCE

COMMENTS
GENETICS
#gene lexA
#map_position 92 min
CLASSIFICATION
#superfamily lexa repressor
KEYWORDS DNA binding, repressor, transcription regulator
SUMMARY
#length 202
#molecular weight 22358
SEQUENCE
5 10 15 20 25 30
1MKALTARQOQEVFDLIRDHISQTGMPPTRAE

Figure 2.12. Protein Information Resource sequence format.
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Abstract Syntax Notation Sequence Format

Notation (ASN.1) is a formal data description language that has been
he computer industry. ASN.1 (http://www-sop.inria.fr/rodeo/personnel/
1; NCBI 1993) has been adopted by the National Center for Biotechnol-
NCBI) to encode data such as sequences, maps, taxonomic information,
s, and bibliographic information. These data sets may then be easily
ed by computers. The ASN.1 sequence format is a highly structured
ecially designed for computer access to the data. All the informa-
sequence storage, e.g., the GenBank format, is present. For
ieved in this format by ENTREZ (see below). However, the
cult to read by eye than a GenBank formatted sequence.
use the ASN.1 format except when running a computer

Genetic Data

d by a sequence analysis system called the
Steven Smith and collaborators (Smith
itor that runs on UNIX machines.
rface of the GCG software, ver-
that is used for storing all
The file consists of vari-
ous fields eld has specific lines, each with
in double quotes or follows

{

name "Short name for sequence"

longname "Long (more descriptive) name for sequence"
sequence-ID "Unique ID number"

creation-date "mm/dd/yy hh:mm:ss”

direction [-1]11]

strandedness [1]2]

type {DNA|RNA|PROTEIN | TEXT |MASK]

offset (-999999,999999)

group-ID (0,999)

creator "Author's name"

descrip "Verbose description”

comments "Lines of comments about a sequence"
sequence "gctagctagectagectagetettagetgtagtegtagetgatgetag

ctgatgctagctagctagctagectgategatgetagetgategtag
ctgacggactgatgctagectagetagetagetgtctagtgtegtag
tgcttattge”

Figure 2.13. The Genetic Data Environment format.
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CONVERSIONS OF ONE SEQUENCE FORMAT TO ANOTHER

READSEQ to Switch be quence Formats

emely useful sequence formatting program developed by D. G. Gilbert
Bloomington (gilbertd@bio.indiana.edu). READSEQ can recognize
ence file in any of the formats shown in Table 2.3, identify the for-
an alternative format. Some of these formats are used for
s multiple sequence alignment and phylogenetic analysis.
for two sample DNA sequences, seql and seq2, is shown
e reached at the Baylor College of Medicine site at

dseq or ftp.bioindiana.edu/molbio/mac to obtain the

, such as those required for multiple sequence
rsimony (PAUP), are also converted. Exam-
able 2.4. Options to reverse-complement
SEQIO, another sequence conversion
ioweb.pasteur.fr/docs/seqio/seqio.
is.edu/~gusfield/seqio.html.

program for a
html and is av.

conversion

stract Syntax Notation (ASN.1)
. DNA Strider

European Molecular Biology Laboratory
Fasta/Pearson

Fitch (for phylogenetic analysis)
GenBank

S Uk W

1cal Research Foundation (NBRF)

1n only)

. Phylogenetic Analysis Using Parsimony (PAUP) NEXUS format
13. Phylogenetic Inference package (Phylip v3.3, v3.4)

14. Phylogenetic Inference package (Phylip v3.2)

15. Plain text/Staden®

16. Pretty format for publication (output only)

17. Protein Information Resource (PIR or CODATA)

18. Zuker for RNA analysis (in only)

 For conversion of single sequence files only. The other conversions can
be performed on files with single or multiple sequences.
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Table 2.4. Muyltiple sequence format conversions by READSEQ

bp
ses, 25C8

DEFINITION
ORIGIN

bases, 2688 checksum.
gctag ctagct*

ql

seql, 16 bases, 2688 checksum.
16 BP

agctagctag ctagct

//
ID seq?
DE seq2, 16 bases, 25C8 checksum.
SQ 16 BP
aactaactaa ctaact
//

Continued.
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Table 2.4. Continued.

6. GCG format
seql

seq

1 ag

gth: 16 Check: 9864
g ctagct

seq?
3 16
aac

Check: 9672
1

7. cint ence analysis program DNA Strider

Strid )
seq

e gses, 2688 checksum.
gctagct

rom DNA St
sequence

8 checksum.

taactaactaag
/

8.  Format for p lysis prog

seql, 16 B g checksum.
agc tag gc t

ylogenetic analysis programs PHYLIP

agctagctag ctagct
aactaactaa ctaact

eql, 16 bases, 2688 checksum.

5 10 15 20
30
l agctagctagctagect

/17
ENTRY seq?
TITLE seq?, 16 bases, 25C8 checksum.
SEQUENCE

5 10 15 20
25 30

1l aactaactaactaact
/17
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Table 2.4. Continued.

11. GCGm le sequence format (MSF)

MSF: 16 Type: N January 01,
: 9536 ..

Len: 16 Check: 9864
16 Check:

Len: 9672

g
id { local
descr { ti

agctagctagcet”

“seq2” },

etic analysis program PAUP by David Swofford

eq.in.2506 -- data title]

ame: seql Len: 16 Check: 2688]
[Name: seq? Len: 16 Check: 25C8]

pbegin data;
dimensions ntax=2 nchar=16;
format datatype=dna interleave missing=-;
matrix
seql agctagctagctagct
seq? aactaactaactaact

Two sequences in FASTA multiple sequence format (1) were used as input for the remainder of the for-
mat options (2-14).
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GCG Programs for Conversion of Sequence Formats

The “from’programs convert sequence files from GCG format into the named format,
and the “t ograms convert the alternative format into GCG format. Shown are the
ames, no spaces included. There are no programs to convert to GenBank

following sequence formatting programs: (1)
eing received from a remote PC to GCG for-
le that has been edited, and will also per-
GCG sequence file as an ASCII file to

ultiple sequences in tan-
quence formats, which
iple sequence format,

1igned sequence characters occupy the same
icated by a dash.

>gi|730305]
MATHHTLWMGLALLGVLGDLOAAPEAQVSVQPNFQQDKFL
RTQTPRAELKEKFTAFCKAQGFTEDTIVFLPQTDKCMTEQ

>gi|404390]
---------------------- APEAQVSVQPNFQPDKFL
RTQTPRAELKEKFTAFCKAQGFTEDSIVFLPQTDKCMTEQ
>g1/895868

MAALRMLWMGLVLLGLLGFPQTPAQGHDTVQPNFQQDKFL
RTOQTLKDELKEKFTTFSKAQGLTEEDIVFLPQPDKCIQE-

represents the same alignment as:

MATHHTLWMGLALLGVLGDLQAAPEAQVSVQPNFQQDKFL
---------------------- APEAQVSVQPNFQPDKFL

RTQTPRAELKEKFTAFCKAQGFTEDTIVFLPQTDKCMTEQ
RTQTLKDELKEKFTTFSKAQGLTEEDIVFLPQPDKCIQE-
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2. GCG multiple sequence format (MSF) produced by the GCG multiple sequence align-
ment progam PILEUP. The gap symbol is “~”. The length indicated is the length of the
alignme ich is the length of the longest sequence including gaps.

PileUp of: @list4
Symbol comparison table: GenRunData:blosum62.cmp CompCheck: 6430

GapWeight: 12
GaplLengthWeight: 4

listd.msf MSF: 883 Type: P February 28, 1997 16:42 Check: 482

Name: haywire Len: 883 Check: 3979 Weight: 1.00
Name: xpb-human Len: 883 Check: 9129 Weight: 1.00
Name: rad25 Len: 883 Check: 5359 Weight: 1.00
Name: xpb-ara Len: 883 Check: 2015 Weight: 1.00
//
1 50
haywire MGPPK
XP=Muman s e =
rad25 MTDVEGYQPK SKGKIFPDMG ESFFSSDEDS PATDAEIDEN YDDNRETSEG
XP=@QPE -crTTTTTTTIy CTTTTTTITTTI CTTTTTTTLTLI (TTTTTTTTLD CTTTT LT LTS
51 100

haywire KSRKDRSG.. GDKFGKKRRA EDEAFTQLVD DNDSLDATES EGIPGAASKN
xpb-human MGKRDRAD.. RDKKKSRKRH YED...EEDD EEDAPGNDPQ EAVPSAAGKQ
rad25 RGERDTGAMV TGLKKPRKKT KSSRHTAADS SMNQMDAKDK ALLQDTNSDI
XPD-ara  ~mmmmmmmn s e M KYGGKDDQKM KNIQNAEDYY

G

program CLUSTALW (Thomp-
nt position, the program also shows the cur-
of each row.

Page 1.1

1 15 16 30 31 45

1 gi|730305| MATHHTLWMGLALLG VLGDLQAAPEAQVSV QPNFQQDKFLGRWFS
23

2 gi|404390| -------------ms mmo-- APEAQVSYV QPNFQPDKFLGRWFS
45

3 91]895868 MAALRMLWMGLVLLG LLGFPQTPAQGHDTV QPNFQQDKFLGRWYS

4. Blocked alignment used by GDE and GCG SEQLAB (Fig. 2.14). Unlike the other exam-
ples shown, which are all simple text files of an alignment, the following figure is a
screen display of an alignment, using GDE and SEQLAB display programs. The under-
lying alignment in text format would be similar to the GCG multiple sequence align-
ment file shown above.
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Figure 2.14. A multiple sequence alignment editor for GCG MSF files. For information on using multiple sequence align-
ment editors and for examples of other editors, see Chapter 4.

/

seql, 16 bases, 2688 checksum.
agc tag cta gct agc t
seq?2, 16 bases, 25C8 checksum.
aac taa cta act aac t

ograms PHYLIP (phylogenetic
or length of alignment.

a. version 3.2

2 16 YF
seql agctagctag ctagct
seq? aactaactaa ctaact

b. versions 3.3 and 3.4

2 16
seql agctagctag ctagct
seq? aactaactaa ctaact

7. Format used by phylogenetic analysis program PAUP (phylogenetic analysis using par-
simony). ntax is number of taxa, nchar is the length of the alignment, and interleave
allows the alignment to be shown in readable blocks. The other terms describe the type
of sequence and the character used to indicate gaps.
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FNEXUS
[ comments ]
begin data;

dimensions ntax=4 nchar=100;
format datatype=protein interleave gap=-;

matrix
[ 1
501
NOYWIPE =c==cscsc= sscocssose cocsscoocos soscosssos ososs MGPPK
xpb-human ---------- ---------- ---------- ---------- --------- -
rad25 MTDVEGYQPK SKGKIFPDMG ESFFSSDEDS PATDAEIDEN YDDNRETSEG
XPD=fFE m=c°cc=ccccs sccccocsossc SooooSoo0S S5oS0I0SSS SooSSSGoS =
[ 51
1001

haywire KSRKDRSG-- GDKFGKKRRA EDEAFTQLVD DNDSLDATES EGIPGAASKN
xpb-human MGKRDRAD-- RDKKKSRKRH YED---EEDD EEDAPGNDPQ EAVPSAAGKQ
rad25 RGERDTGAMV TGLKKPRKKT KSSRHTAADS SMNQMDAKDK ALLQDTNSDI
Xpb-ara --------o- s-soo----- oo M KYGGKDDQKM KNIQNAEDYY

endb]o,ck;

. The Selex f
used to ke

hidden Ma
e alienment of s

y Sean Eddy has been

# Example selex file

seql ACGACGACGACG.
seq? . . GGGAAAGG. GA
seq3 UUU. . AAAUUU . A
seql ..ACG
seq?2 AAGGG

seq3 AA...UUU

a name, followed by the aligned sequence. A space, dash, underscore,
otes a gap. Long alignments are split into multiple blocks and interleaved or
ated by blank lines. The number of sequences, their order, and their names must be
the same in every block, and every sequence must be represented even though there are no
residues present.

9. The block multiple sequence alignment format (see http://www.blocks.fhcrc.org/).

Identification starts contain a short identifier for the group of sequences from which the
block was made and often is the original Prosite group ID. The identifier is terminated by
a semicolon, and “BLOCK” indicates the entry type.

AC contains the block number, a seven-character group number for sequences from
which the block was made, followed by a letter (A—Z) indicating the order of the block in
the sequences. The block number is a 5-digit number preceded by BL (BLOCKS database)
or PR (PRINTS database). min,max is the minimum,maximum number of amino acids
from the previous block or from the sequence start. DE describes sequences from which
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the block was made. BL contains information about the block: xxx is the amino acids in the
spaced triplg@\found by MOTIF upon which the block is based. w is the width of the
sequence se ts (columns) in the block. s is the number of sequence segments (rows)
r values (nl1, n2) describe statistical features of the block. Sequence_id is
Each sequence line contains a sequence identifier, the offset from the
uence to the block in parentheses, the sequence segment, and a weight

ID short_identifier; BLOCK

AC block_number; distance from previous block = (min,max)
DE description

BL xxx motif; width=w; seqs=s; 99.5%=nl; strength=n2
sequence_id (offset) sequence_segment sequence_weight.

/1

ID  GLU_CARBOXYLATION; BLOCK
AC BLOOO11; distance from previous block=(1,64)
DE Vitamin K-dependent carboxylation domain proteins.
BL ECA motif; width=40; seqs=34; 99.5%=1833; strength=1412
FA10_BOVIN ( 45) LEEVKQGNLERECLEEACSLEEAREVFEDAEQTDEFWSKY 31
FA10_CHICK ( 45) LEEMKQGNIERECNEERCSKEEAREAFEDNEKTEEFWNIY 46
FAL10_HUMAN ( 45) LEEMKKGHLERECMEETCSYEEAREVFEDSDKTNEFWNKY 33
FA7_BOVIN ( 5) LEELLPGSLERECREELCSFEEAHEIFRNEERTRQFWVSY 57
FA7_HUMAN ( 65) LEELRPGSLERECKEEQCSFEEAREIFKDAERTKLFWISY 42
OSTC_CHICK ( 6) SGVAGAPPNPIEAQREVCELSPDCNELADELGFQEAYQRR 94

IN A SEQUENCE DATABASE

much
anism; name of locus;
es in the sequence such as coding
; and finally the sequence itself. The above infor-
r form very much like that found in a relational database.
n about databases is given in the box “Database Types.”) If one
e table with each sequence entry occupying one row, then each column will
¢ one of the above types of information for each sequence, and each column is called
a FIELD (see Fig. 2.6). The last column contains the sequences themselves. It is very easy
to make an index of the information in each of these fields so that a search query can locate
all the occurrences through the index. Even related sequences are cross-referenced. In
addition, the information in one database can be cross-referenced to that in another
database. The DNA, protein, and reference databases have all been cross-referenced so that
moving between them is readily accomplished (see ENTREZ section below, p. 45).

As siown by the above examples, each DNA or protein seq

inf@rmation, i

Database Types

There are several types of databases; the two principal types are the relational and
object-oriented databases. The relational database orders data in tables made up of
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rows giving specific items in the database, and columns giving the features as
attributes of those items. These tables are carefully indexed and cross-referenced with
each other, sometimes using additional tables, so that each item in the database has a
unique set of identifying features. A relational model for the GenBank sequence
database has been devised at the National Center for Genome Resources
(http://www.ncgr.org/research/sequence/schema.html).

The object-oriented database structure has been useful in the development of bio-
logical databases. The objects, such as genetic maps, genes, or proteins, each have an
associated set of utilities for analysis and display of the object and a set of attributes
such as identifying name or references. In developing the database, relationships
among these objects are identified. To standardize some commonly arising objects in
biological databases, e.g., maps, the Object Management Group (http://www.
omg.org) has formed a Life Science Research Group. The Life Science Research
Group is a consortium of commercial companies, academic institutions, and soft-
ware vendors that is trying to establish standards for displaying biological informa-
tion from bioinformatics and genomics analyses (http://www.omg.org/home
pages/lsr). The Common Object Request Broker Architecture (CORBA) is the Object
Management Group’s interface for objects that allows different computer applica-
tions to communicate with each other through a common language, Interface Defi-
nition Language (IDL). To plan an object-oriented database by defining the classes of
objects and the relationships among these objects, a specific set of procedures called
the Unified Modeling Language (UML) has been devised by the OMG group.

equence databases that are
bases also provide public

Ow may retrieve sequences from a
equences. At the time of retrieving the sequence,
e available. The FASTA format, which is readily converted
also is smaller and simpler, containing just a line of sequence iden-
y the sequence without numbers, is very useful for this purpose. A list of
ce databases accessible through the internet is provided in Table 2.5.

USING"THE DATABASE ACCESS PROGRAM ENTREZ

One straightforward way to access the sequence databases is through ENTREZ, a resource
prepared by the staff of the National Center for Biotechnology Information, National
Library of Medicine, Bethesda, Maryland, and available through their web site at
http://ncbi.nlm.nih.gov/Entrez. ENTREZ provides a series of forms that can be filled out
to retrieve a DNA or protein sequence, or a Medline reference related to the molecular
biology sequence databases. After search for either a protein or a DNA sequence is chosen
at the above address, another Web page is provided with a form to fill out for the search,
as shown in Figure 2.15.
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Table 2.5. Major sequence databases accessible through the internet

1. GenBank at
ington, D
http://

. Europea
http://

¢ National Center of Biotechnology Information, National Library of Medicine, Wash-
sible from:
nlm.nih.gov/Entrez
ar Biology Laboratory (EMBL) Outstation at Hixton, England

embl/index.html
3. DNA D an (DDBJ) at Mishima, Japan

http:/ ip/
4. Protg purce (PIR) database at the National Biomedical Research Foundation in
1998)
pirwww/

base at ISREC, Swiss Institute for Experimental Cancer Research

ch-de

he European Bioinformatics Institute allows both simple and
e sequence databases. The SRS system may also be used on
ocal sequence databases.

atabases are availa return sequence files through an internet brows-
any of the sites sho es. The first three database centers are updat-
daily and exchange ng ysary to access one of them. Additional Web
ddresses of databases £ mic databases, are given in Chapter 9.

These databases can a 0 seqt /hOT organism.

On the ENT
“Search,” the

ake a select yindow after the term
terms in the long® adow after “for.” The database
Ties t of these terms or related

earch looks for da at include the first term
d subsequent terms repeated u ilhe “Limits” link on
page is used to limit the GenBank and various log-
al cory ons of search terms may be designed by tf ds refer to the
GenB elds described above in Figure 2.5. When sea particular
field8@me knowledge of the terms that are in the database 3 stth find-
ingfSuitable ter i i i

al databases
¢ beginning to use
“controlled vocabular-
ies” for entering data
so that these defined
terms can confidently
be used for database
subsequent searches.

1elds include accession (number),
e, journal name, keyword, modification date,
accession (number), properties, protein name, publica-
, seqID string, sequence length, substance name, text word, title
, and sequence ID. Similar fields are shown for the DNA database search.
e results of searches in separate fields may be combined to narrow down the
choices. The number of terms to be searched for and the field to be searched are the main
decisions to be made. In doing so, keep in mind that it is important to be as specific as pos-
sible, or else there may be a great many possibilities. Thus, knowing accession number,
protein name, or name of gene should be enough to find the required entry quickly. If the
same protein has been sequenced in several organisms, providing an organism name is also
helpful. When the chosen search terms and fields have been decided and submitted, a
database comprising all of the currently available sequences (called the nonredundant or
NR database) will be searched. Other database selections may also be made.

The program returns the number of matches found and provides an opportunity to nar-
row this list by including more terms. When the number of matching sequences has been
narrowed to a reasonable number, the sequence may be retrieved in a chosen format in
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melanogaster genome based select structure links
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Figure 2.15. ENTREZ Web form for protein database search. The window shown is from the protein database search option
at http://www.ncbi.nlm.nih.gov/Entrez/. The search term input window is activated by clicking, one or more search terms are
typed, and the “Go” button is clicked (top window). Batch ENTREZ, available from the main ENTREZ Web page, provides
a method for retrieving large numbers of sequences at the same time. A particular field (e.g., gene name, organism, protein
name) in the GenBank entry can also be searched, by using the “Limits” option. The request is then sent to a server in which
all key words in the sequence entries have been indexed, as in looking up a word in the index of a book. GenBank entries with
all of the requested terms can be readily identified because the index will indicate in which entry they are all found. The
machine returns the number of matches found. Clicking on the retrieve button leads to a list of the found items. Those items
chosen are retrieved in a new window format.

several straightforward steps. It is important to look through the sequences to locate the
one intended. There may be several different copies of the sequence because it may have
been sequenced from more than one organism, or the sequence may be a mutant sequence,
a particular clone, or a fragment. There is no simple way to find the correct sequence with-
out manually checking the information provided in each sequence, but this usually takes
only a short time. Before leaving ENTREZ, it is often useful to check for sequence database
entries that are similar to the one of interest, called “neighbors” by ENTREZ. The expand-
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ed query searches other database entries of interest, such as the same protein in another
organism, a l@kee chromosomal sequence that includes the gene, or members of the same
gene family. MHile visiting the site, note that ENTREZ has been adapted to search through
a number biological databases, and also through Medline, and these searches are
available fi initial ENTREZ Web page.

Retrieving a Specific Sequence

Even following the above instructions, it can be difficult to retrieve the sequence of a
specific gene or protein simply because of the sheer number of sequences in the Gen-
Bank database and the complex problem of indexing them. For projects that require
the most currently available sequences, the NR databases should be searched. Other
projects may benefit from the availability of better curated and annotated protein
sequence databases, including PIR and SwissProt. The genomic databases described
in Chapter 10 can also provide the sequence of a particular gene or protein. Protein
sequences in the Genpro database are generated by automatic translation of DNA
sequences. When read from cDNA copies of mRNA sequences, they provide a reli-
able sequence, given a certain amount of uncertainty as to the translational start site.
Many protein sequences are now predicted by translation of genomic sequences,
requiring a prediction of exons, a somewhat error-prone step described in more
detail in Chapter 8. The origin of protein sequence entries thus needs to be deter-
mined, and if they are not from a cDNA sequence, it may be necessary to obtain and
sequence a cDNA copy of the gene.
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INTRODUCTION

UENCE ALIGNMENT IS a very large topic to cover as one chapter. Thus,
hapter, more detailed discussions of topics, and information on subjects
interest, will be available from the Web site for this book. This site is
to the same subject headings as this chapter and can be found at
ticsonline.org. In addition, starting with this chapter, procedural
the Beginning of the Methods section of most chapters to provide
analysis. This chapter discusses pair-wise sequence align-
ent is discussed in Chapter 4.

DEFINITION OF

f comparing two (pair-wise alignment) or more
y searching for a series of individual characters
in the sequences. Two sequences are aligned
ical or similar characters are placed in the
be placed in the same column as a mis-
imal alignment, nonidentical char-
inilar characters as possible into
nner are said to be similar.
and they are illustrated
e to align the entire sequence,
quence. Sequences that are

acters and gaps
vertical registe
There are
below in Ei

Global Alignme

ein sequence fragments in Figure 3.1, the global alignment is
tire sequence length to include as many matching amino acids as pos-
nd including the sequence ends. Vertical bars between the sequences indicate

LGPSSKQTGKGS-SRIWDN

| | | | | | | Global alignment
LN- 1 TKSAGKGAIMRLGDA

GKG
| | | Local alignment
GKG

Figure 3.1. Distinction between global and local alignments of two sequences.
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the presence, of identical amino acids. Although there is an obvious region of identity in
this exampléX the sequence GKG preceded by a commonly observed substitution of T for
A), a globgla@lignment may not align such regions so that more amino acids along the

Local Alignment

rity is given to finding these local regions (Fig. 3.1) than to
lude more neighboring amino acid pairs. Dashes indicate
ignment. This type of alignment favors finding conserved

SIGNIFICANCE

functional, structural, and evolutionary infor-
t to obtain the best possible or so-called
Sequences that are very much alike, or
have the same function, be it a reg-
imilar biochemical function and
ally, if two sequences from
cestor sequence, and the
ent indicates the changes that
es and a common ancestor

own in Figure
genome analysis and large-
cognize that sequence similarity

parisons, it becomes
of several possible

Sequence A Sequence B

X steps y steps

Ancestor sequence

Figure 3.2. The evolutionary relationship between two similar sequences and a possible common
ancestor sequence that would make the sequences homologous. The number of steps required to
change one sequence to the other is the evolutionary distance between the sequences, and is also the
sum of the number of steps to change the common ancestor sequence into one of the sequences (x)
plus the number of steps required to change the common ancestor into the other (y). The common
ancestor sequence is not available, such that x and y cannot be calculated; only x + y is known. By
the simplest definition, the distance x + y is the number of mismatches in the alignment (gaps are
not usually counted), as illustrated in Fig. 1.3. In a phylogenetic analysis of three or more similar
sequences, the separate distances from the ancestor can be estimated, as discussed in Chapter 6.
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types of ancestor relationships, or there may be no ancestor relationship at all, as illustrat-
ed in Figure 38. For example, new gene evolution is often thought to occur by gene dupli-
cation, creatii@two tandem copies of the gene, followed by mutations in these copies. In
rare cases, utations in one of the copies provide an advantageous change in func-
tion. The s may then evolve along separate pathways. Although the resulting sep-
aration o will generate two related sequence families, sequences among both
families ilar due to the single gene ancestor. In addition, genetic rearrange-

A.
Il
Gene
duplication |

/\Epeciation Gene duplication

Species | Species Il

C. I D. I

Figure 3.3. Origins of genes having a similar sequence. Shown are illustrative examples of gene evo-
lution. In A, a duplication of gene a to produce tandem genes al and a2 in an ancestor of species I
and II has occurred. Separation of the duplicated region by speciation gives rise to two separate
branches, shown in B as blue and red. al in species I and al in species II are orthologous because
they share a common ancestor. Similarly, a2 in species I and a2 in species II are orthologous. How-
ever, the al genes are paralogous to the a2 genes because they arose from a gene duplication event,
indicated in A. If two or more copies of a gene family have been separated by speciation in this fash-
ion, they tend to all undergo change as a group, due to gene conversion-type mechanisms (Li and
Graur 1991). In C, a gene in species I and a different gene in species II have converged on the same
function by separate evolutionary paths. Such analogous genes, or genes that result from convergent
evolution, include proteins that have a similar active site but within a different backbone sequence.
In D, genes in species I and II are related through the transfer of genetic material between species,
even though the two species are separated by a long evolutionary distance. Although the transfer is
shown between outer branches of the evolutionary tree, it could also have occurred in lower-down
branches, thus giving rise to a group of organisms with the transferred gene. Such genes are known
as xenologous or horizontally transferred genes. Transfer of the P transposable elements between
Drosophila species is a prime example of such horizontal transfer (Kidwell 1983). Horizontal trans-
fer also is found in bacterial genomes and can be traced as a regional variation in base composition
within chromosomes. A similar type of transfer is that of the small ribosomal RNA subunits of mito-
chondria and chloroplasts, which originated from early prokaryotic organisms. Symbiotic relation-
ships between organisms may be a precursor event leading to such exchanges. Other rearrangements
within the genome (not shown) may produce chimeric genes comprising domains of genes that
were evolving separately.
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ssort domains in proteins, leading to more complex proteins with an evolu-
that is difficult to reconstruct (Henikoff et al. 1997).

theory provides terms that may be used to describe sequence relationships.
es that share a common ancestry and function in the absence of any evi-
lication are called orthologs. When there is evidence for gene duplica-
evolutionary lineage derived from one of the copies and with the same
rred to as orthologs. The two copies of the duplicated gene and their
ionary lineage are referred to as paralogs. In other cases, similar
nof have a common ancestor but may have arisen independent-
s converging on the same function, called convergent evo-
ble examples in protein structures. For instance, although
ubtilisin have totally different three-dimensional struc-
ow similar structural features, including histidine (H),
the catalytic sites of the enzymes (for discussion, see
al examples are given in Chapter 10 (p. 509). In such
ized. Such sequences are referred to as analogous
ments can help to sort out possible evolution-
et al. 1997).

Genes that are descend-
ed from a common
ancestor are called
homologs.

0). A closer
ins among si
pointed out b guences can be either homologous or non-
mologous, but g angements referred to above can give
rise to chimeric g 50 pologous and others are not. Refer-
ring to the entir oma ions leads to an inaccurate and
incomplete des; sequence

“homology Another co, tracing the or

It is important
describe these relati
ships  accurately
publications. A
mon error in the

gs is that individual genes

;“ef;’“sse may not sha  evolutionary or1§ of the genome in which they
ZZZ';” ymb -induced transduction can
the genetic material bety organisms. In such cases,

organisms will be dif-
es of organisms
pary terminol-
Lawrence

ory of the transferred sequen
with the capability of detecting sucht

ome ponsibility to describe these changes wit
ogy. s case, the sequences are xenologous (Gray a
and man (1997) have shown that horizontal transfe ies is as
cofimon in enteric_bacteriaifenot-nore _common, than on. Describing such
s. As discussed in Chapters 6 and
¢ analyses help to uncover such events.

OVERVIEW € QUENCE ALIGNMENT

Alignm airs of Sequences

Alignment of two sequences is performed using the following methods:

1. Dot matrix analysis

2. The dynamic programming (or DP) algorithm

3. Word or k-tuple methods, such as used by the programs FASTA and BLAST, described
in Chapter 7.

Unless the sequences are known to be very much alike, the dot matrix method should
be used first, because this method displays any possible sequence alignments as diagonals
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on the matrix. Dot matrix analysis can readily reveal the presence of insertions/deletions
inverted repeats that are more difficult to find by the other, more automat-
e major limitation of the method is that most dot matrix computer pro-
w an actual alignment.

rogramming method, first used for global alignment of sequences by

alignments of the sequences. An alignment is generated by starting
equences and attempting to match all possible pairs of characters
following a scoring scheme for matches, mismatches, and
matrix of numbers that represents all possible alignments
est set of sequential scores in the matrix defines an opti-
ino acid substitution matrix, such as the Dayhoff per-
50 (PAM250) or blosum substitution matrix 62
es and mismatches. Similar matrices are available for

guaranteed in a mathematical sense to provide
ignment for a given set of user-defined vari-
ap penalties. Fortunately, experience with
uch help for making the best choices,
he dynamic programming method
utational steps, which increase
s. The computer memory
hus, it is difficult to use
cientists have greatly reduced
without compromising the
ds are widely used in the
Other shortcuts have

quences (called words or k-tuples) and by then jo1
t by the d i i ds enough to be suitable
at align best with an input test
are heuristic; i.e., an empirical method of com-
es of thumb are used to find solutions and feedback is
rmance. However, these methods are reliable in a statistical sense,
rovide a reliable alignment.

Multiple Sequence Alignment

From a multiple alignment of three or more protein sequences, the highly conserved
residues that define structural and functional domains in protein families can be identified.
New members of such families can then be found by searching sequence databases for
other sequences with these same domains. Alignment of DNA sequences can assist in find-
ing conserved regulatory patterns in DNA sequences. Despite the great value of multiple
sequence alignments, obtaining one presents a very difficult algorithmic problem. The
methods that have been devised are discussed in Chapter 4.
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METHODS
Choose two
sequences!
A 4 y
Perform Translate Predict
local < sequences <« gene
alignment’ structure
(Chapter 8)
Alter parameters,
e.g., scoring matrix,
gap penalties, and
repeat alignment
Yes
Perform Examine Y
statistical test of sequences for s

. > ”y
alignment score presence of repeats

or low-complexity
sequences’
No
Sequences are
No q P
not detectably [
»! similar
Yes
A 4
Sequences are
significantly
similar
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DOT MATRIX SEQUENCE COMPARISON

A dot matri lysis is primarily a method for comparing two sequences to look for pos-
sible align characters between the sequences, first described by Gibbs and McIntyre
is also used for finding direct or inverted repeats in protein and DNA
edicting regions in RNA that are self-complementary and that, there-

enk 1981). Additional descriptions of the dot matrix
oolittle 1986; States and Boguski 1991). The examples
e of DNA Strider (version 1.3) on a Macintosh com-

ctive features for the UNIX X-Windows environ-
http://www.cgr.ki.se/cgr/groups/sonnhammer/
programs COMPARE and DOTPLOT also
t matrix method, the program PLALIGN
y the alignments found by the
es on a graph (http://fasta.bioch.
trix program that may be used
00) (http://www.isrec.isb-

uences. If one
d, protein

mended scoring matrix
e combination is one that is known
m (or scrambled) sequences. A global alignment
es of approximately the same length.

-quality alignment is one that includes most of each sequence, a signifi-
.g., 25%) of identities throughout the alignment, multiple examples of conservative
ns (chemically and structurally similar amino acids), and relatively few gaps confined to
ecific regions of the alignment. A poor-quality alignment includes only a portion of the sequences,
has few and widely dispersed identities and conservative substitutions, tends to include regions of low
complexity (repeats of same amino acid), and includes gaps that are obviously necessary to obtain the
alignment. For DNA sequences, a significant alignment must include long runs of identities and few
gaps. For two random or unrelated DNA sequences of length 100 and normal composition (0.25 of
each base), the longest run of matches that can be expected is 6 or 7 (see text). A clue as to the signif-
icance of an alignment may also be obtained by using an alignment program that gives multiple alter-
native alignments, e.g., LALIGN. The first alignment found, which will be the highest scoring, should
have a much higher score than the following ones, which are designed so that the same sequence posi-
tions will not be aligned a second time. Hence, these subsequent alignments should usually be random.

4. The result of this analysis can be a guide for the test of significance that follows. In the test described
in this chapter, the second sequence is scrambled and realigned with the first sequence. Scrambling can
be done at the level of the individual nucleotide or amino acid, or at the level of words by keeping the
composition of short stretches of sequence intact.
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.

Pair-wise Sequence Comparjson

The major a@iMantage of the dot matrix method for finding sequence alignments is that all
possible m3 s of residues between two sequences are found, leaving the investigator the
choice of i ing the most significant ones. Then, sequences of the actual regions that
align can d by using one of two other methods for performing sequence align-
ments, programming. These methods are automatic and usually show one
best or ent, even though there may be several different, nearly alike align-
erated by these programs can be compared to the dot matrix align-
e longest regions are being matched and whether insertions
ost reasonable places.
xquence comparison, one sequence (A) is listed across the
nce (B) is listed down the left side, as illustrated in Fig-
t character in B, one then moves across the page keep-
in any column where the character in A is the same.
pared to the entire A sequence, and a dot is placed
ocess is continued until the page is filled with
characters with B characters. Any region of
of dots. Isolated dots not on the diagonal
ated to any significant alignment.
filtering out random matches in a
to compare the two sequences.
djacent positions in the two

by u
‘quence p&

Instead of comp
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Figure 3.4. Dot matrix analysis of DNA sequences encoding phage N\ cI (vertical sequence) and
phage P22 ¢2 (horizontal sequence) repressors. This analysis was performed using the dot matrix dis-
play of the Macintosh DNA sequence analysis program DNA Strider, vers. 1.3. The window size was
11 and the stringency 7, meaning that a dot is printed at a matrix position only if 7 out of the next
11 positions in the sequences are identical.
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Figure 3.5. Dot matrix analysis of the amino acid sequences of the phage A ¢I (horizontal sequence)
and phage P22 2 (vertical sequence) repressors performed as described in Fig. 3.4. The window size
and stringency were both 1.

if a certain

e number of random matches is
A symbols as compared to 20 amino acid sym-
A sequences is 15 and a suitable match requirement in
protein sequences, the matrix is often not filtered, but a window size
a match requirement of 2 will highlight matching regions. If two proteins are
ed to be related but to have long regions of dissimilar sequence with only a small
proportion of identities, such as similar active sites, a large window, e.g., 20, and small
stringency, e.g., 5, should be useful for seeing any similarity. Identification of sequence
alignments by the dot matrix method can be aided by performing a count of dots in all pos-
sible diagonal lines through the matrix to determine statistically which diagonals have the
most matches, and by comparing these match scores with the results of random sequence
comparisons (Gibbs and McIntyre 1970; Argos 1987).

An example of a dot matrix analysis between the DNA sequences that encode the
Escherichia coli phage N cI and phage P22 c2 repressor proteins is shown in Figure 3.4. With
a window of 1 and stringency of 1, there is so much noise that no diagonals can be seen,
but, as shown in the figure, with a window of 11 and a stringency of 7, diagonals appear in
the lower right. The analysis reveals that there are regions of similarity in the 3" ends of the
coding regions, which, in turn, suggests similarity in the carboxy-terminal domains of the
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encoded repgessors. Note that sequential diagonals in matrix C do not line up exactly, indi-
ence of extra nucleotides in one sequence (the lambda cI gene on the verti-
iagonals shown in the lower part of the matrix reveal a region of sequence
carboxy-terminal domains of the proteins. A small insertion in the cI pro-
ximately in the middle of this region and shifts the diagonal slightly
s for this pattern.

ot matrix analysis between the amino acid sequences of the same two
I and phage P22 c2 repressor proteins is shown in Figure 3.5. This
wigdow of 1 and a stringency of 1. As found with the DNA
e gOBresponding genes, diagonals shown in the lower part of the
nce similarity in the carboxy-terminal domains of the pro-
e ¢l protein approximately in the middle of this region
lownward and which is also observed in the DNA align-
also visible. Note that these windows are much small-
comparisons due to the greater number of possible
g fewer random matches.

patrix comparisons, use long windows and high
ein sequences, use short windows, e.g., 1 and
pt when looking for a short domain of par-
0 this case, use a longer window and a
gncy, respectively.

o protein sequences by the dot
group or some other feature
cond, a symbol compar-
be used (States and Boguski
occurrence in aligned pro-
es 78 and 85, respective-
a minimum similarity
ption, which aver-
ge score. Final-
m, and the
antly related
are then calculated, and
a computer screen (Argos 1987).

cal scale).
similarity j

..,
window and
similarity in ot

is method should be useful fo

Sequence Rep

analysis can also be used to find direct and inverted repeats within sequences.
cated regions in whole chromosomes may be detected by a dot matrix analysis, and an
interactive Web-based program has been designed for showing these regions at increasing
levels of detail (http://genome-www.stanford.edu/Saccharomyces/SSV/viewer_start.html).
Direct repeats may also be found by performing sequence alignments with dynamic pro-
gramming methods (see next section). When used to align a sequence with itself, the pro-
gram LALIGN will show alternative possible alignments between the repeated regions;
PLALIGN will plot these alignments on a graph similar in appearance to a dot matrix (see
http://fasta.bioch.virginia.edu/fasta/fasta-list.html; Pearson 1990). Here, the sequence is
analyzed against itself and the presence of repeats is revealed by diagonal rows of dots. A
Bayesian method for finding direct repeats is described on page 122. Inverted repeats
require special handling and are discussed in Chapters 5 and 8. In Figure 3.6, an example
of such an analysis for direct repeats in the amino acid sequence of the human low-densi-
ty lipoprotein (LDL) receptor is shown. A list of additional proteins with direct repeats is
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Figure 3.6. Dot matrix analysis of the human LDL receptor against itself using DNA Strider, vers. 1.3, on a Macintosh com-
puter. (A) Window 1, Stringency 1. There is a diagonal line from upper left to lower right due to the fact that the same
sequence is being compared to itself. The rest of the graph is symmetrical about this line. Other (quite hard to see) lines on
either side of this diagonal are also present. These lines indicate repeated sequences perhaps 50 or so long. Patches of high-
density dots, e.g., at the position corresponding to position 800 in both sequences representing short repeats of the same
amino acid, are also seen. (B) Window 23, Stringency 7. The occurrence of longer repeats may be found by using this sliding
window. In this example, a dot is placed on the graph at a given position only if 7/23 of the residues are the same. These choic-
es are arbitrary and several combinations may need to be tried. Many repeats are seen in the first 300 positions. A pattern of
approximate length 20 and at position 30 is repeated at least six times at positions 70, 100, 140, 180, 230, and 270. Two longer,
overlapping repeats of length 70 are also found in this same region starting at positions 70 and 100, and repeated at position
200. Since few of these diagonals remain in new analyses at 11/23 (stringency/window) and all disappear at 15/23, they are not
repeats of exactly the same sequence but they do represent an average of about 7/23 matches with no deletions or insertions.
The information from the above dot matrix may be used as a basis for listing the actual amino acid repeats themselves by one
of the other methods for sequence alignment described below.
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given in Doqlittle (1986, p. 50), and repeats are also discussed in States and Boguski (1991,
ussed in Chapters 9 and 10, there are many examples of proteins composed

ies of a single domain.

Repeats of a Single Seq bol

can also reveal the presence of repeats of the same sequence charac-
epeats become apparent on the dot matrix of a protein sequence
ertical rows of dots that sometimes merge into rectangular
s are particularly apparent in the right and lower regions
n LDL receptor shown in Figure 3.6 but are also seen
. The occurrence of such repeats of the same sequence
ligning sequences because they create alignments with
lem occurs with regions in which only a few sequence
exity regions. Programs that automatically detect
is so that they do not interfere with database sim-

DYNAMIC ALIGNMENT

sed to align two protein or
analysis because it pro-
s. Programs that perform this
sites that will perform the
ral variables in the pro-

NA and protein sequences. The
y to produce the best or optimal alignment
given set of match conditions. Optimal alignments provide
1ologists concerning sequence relationships by giving the best pos-
1on as to which characters in a sequence should be in the same column in an
ent, and which are insertions in one of the sequences (or deletions on the other).
This information is important for making functional, structural, and evolutionary predic-
tions on the basis of sequence alignments.

Both global and local types of alignments may be made by simple changes in the basic
dynamic programming algorithm. A global alignment program is based on the Needle-
man-Wunsch algorithm, and a local alignment program on the Smith-Waterman algo-
rithm, described below (p. 72). The predicted alignment will be given a score that gives the
odds of obtaining the score between sequences known to be related to that obtained by
chance alignment of unrelated sequences. There is a method to calculate whether or not an
alignment obtained this way is statistically significant. One of the sequences may be scram-
bled many times and each randomly generated sequence may be realigned with the second
sequence to demonstrate that the original alignment is unique. The statistical significance
of alignment scores is discussed in detail below (p. 96).
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Another feature of the dynamic programming algorithm is that the alignments obtained
depend on the choice of a scoring system for comparing character pairs and penalty scores
otein sequences, the simplest system of comparison is one based on iden-
an alignment is only scored if the two aligned amino acids are identical.
also examine related protein sequences that can be aligned easily and
ids are commonly substituted for each other. The probability of a sub-
pair of the 20 amino acids may then be used to produce alignments.
and experience with the dynamic programming programs and the
atly simplified their use. These enhancements are discussed below
jaticsonline.org.
hat several different alignments may provide approximate-
there are alignments almost as good as the highest-scor-
program. Some programs, e.g., LALIGN, provide sever-
different sequence positions matched that can be
e best-scoring one. Alignment programs have also
esign and performance. With the advent of faster
ic programming alignment between a query
to find the similar sequences in several min-
o perform multiple sequence alignment,
t only for a s e the complexity of the calculations
increases substang equence alignment programs are
available as a pa ilence ¢ h as the widely used Genetics
Computer Gro Dal align ocal alignment) programs.
Sequences ca gted into a tex page on a remote host
machine tha a_ dynamic progrd ent, and there are also versions
O 4 MiCrogd e3.1).

a sequence alignment, to keep the goal of the
s the investigator interested in t ether two proteins

ST pmains or structural features, whethe me family with a
related pgical function, or whether they share a c@ ionship? The

improved
it is possi

desirgdobjective will influence the way the analysis is do gcisions to
be gh@de along the way, including the type of program, whe glebal’or local
aljgnment i i p*penalties to be used. There

ces in use (see book Web site), some
e scoring matrices are designed for different pur-
oft PAM matrices, are based on an evolutionary model of
eas others, such as the BLOSUM matrices, are designed to identify
e same family. Alignments between DNA sequences require similar kinds of
erations. It is often worth the effort to try several approaches to find out which
choice of scoring system and gap penalty give the most reasonable result. Fortunately, most
alignment programs come with a recommended scoring matrix and gap penalties that are
useful for most situations. A more recent development (see Bayesian methods discussed on
p. 124) is the simultaneous use of a set of scoring matrices and gap penalties by a method
that generates the most probable alignments (see Table 3.1). The final choice as to the most
believable alignment is up to the investigator, subject to the condition that reasonable deci-
sions have been made regarding the methods used.

For sequences that are very similar, e.g., >95%, the sequence alignment is usually quite
obvious, and a computer program may not even be needed to produce the alignment. As
the sequences become less and less similar, the alignment becomes more difficult to pro-
duce and one is less confident of the result. For protein sequences, similarity can still be
recognized down to a level of approximately 25% amino acid identity. At this level of iden-
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Table 3.1. Web sites for alignment,of sequence pairs

Name of site Web address Reference
Bayes block aligner http://www.wadsworth.org/res&res/bioinfo Zhu et al. (1998)
BCM Search Launcher:

http://dot.imgen.bcm.tmc.edu:9331/seq- see Web site

search/alignment.html

p://www.expasy.ch/tools/sim.html Huang et al. (1990);

Huang and Miller (1991);

Pearson and Miller (1992)

/genofe.cs.mtu.edu/align/align.html Huang (1994)

p:// h.virginia.edu/fasta/fasta_list.html  Pearson and Miller (1992);
Pearson (1996)

hIm.nih.gov/gorf/bl2.html Altschul et al. (1990)
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Smith-Wa alignment), LALIGNO ( an alignment, STA (local alignment, FASTA
method), And PRSS (local alignment with es of second seque ersions of these programs
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carches (Chapter 7)
g two sequences is described i
to, tence alignments, is discussed in Chapter

 align two sequences.
8) and Chapter 4. A related

ave to be
the best for a given
entity is called the “twilight zone”
- The alignment program may provide a quite
gests that the two sequences are homologous. The statis-
alignment score may then be evaluated, as described later in this

e relative numbers of mismatched amino acids and'§
ded empiricall isi ich ga

the Algorithm

Alignment of two sequences without allowing gaps requires an algorithm that performs a
number of comparisons roughly proportional to the square of the average sequence length,
as in a dot matrix comparison. If the alignment is to include gaps of any length at any posi-
tion in either sequence, the number of comparisons that must be made becomes astro-
nomical and is not achievable by direct comparison methods. Dynamic programming is a
method of sequence alignment that can take gaps into account but that requires a man-
ageable number of comparisons.

The method of sequence alignment by dynamic programming and the proof that the
method provides an optimal (highest scoring) alignment are illustrated in Figures 3.7 and
3.8. To understand how the method works, we must first recall what is meant by an align-
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sequence 1 VvV D S - C Y

sequence 2 V E S5 L C Y

SCORE 4 2 4 -11 9 7 SCORE = SUM OF AMINO ACID PAIR SCORES
(26) MINUS SINGLE GAP PENALTY (11) = 15

Figure 3.7. Example of scoring a sequence alignment with a gap penalty. The individual alignment scores are taken from an
amino acid substitution matrix.

equences shown in Figure 3.7 as an example. The two
the page, one under the other, the object being to bring as
o register. In some regions, amino acids in one sequence
al amino acids in the second. In other regions, this pro-
entical amino acids may have to be placed next to each
ed into one of the sequences. Gaps are added to the
he matching of identical or similar amino acids at
eally, when two similar protein sequences are
ions of identical or related amino acid pairs
pre distant, more mismatched amino acid

is calculated using a scoring system
acids and penalizes for poorly
gions, information on the
hese changes may be
amino acid pair is found in
pair is aligned by chance in
ins and others rare; and

1. SCORE OF NEW = SCORE OF PREVIOUS + SCORE OF NEW
ALIGNMENT ALIGNMENT (A) AT.IGNED PAIR
vV b 8 -~ C ¥ v b 8§ - C Y
V E 8 L C ¥ vV E 8§ L ¢ Y
15 = 8 + 7

II. SCORE OF SCORE OF PREVIOUS + SCORE OF NEW

ALIGNMENT (A) ALIGNMENT (B) ALIGNED PAIR
v b 8§ - C v D § - C
vV E 85 L C V E 8§ L C
8 = -1 + 9

ITI. REPEAT REMOVING ALIGNED PAIRS UNTIL END OF ALIGNMENT IS REACHED.

Figure 3.8. Derivation of the dynamic programming algorithm.
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table entry gives the ratio of the observed frequency of substitution between each possible
amino acid pair in related proteins to that expected by chance, given the frequencies of the
amino aci roteins. These ratios are called odds scores. The ratios are transformed to
ds scores, called log odds scores, so that scores of sequential pairs may be

250 and BLOSUMS62 substitution matrices described below (p. 76).
in positive and negative values, reflecting the likelihood of each amino

receives an overall score that is the sum of the positive and
h individual amino acid pair in the alignment. The higher
is the alignment, or the more it resembles alignments in
for gaps in aligned sequences is negative, because such
mmon in sequences of related proteins. Such a score
m an adjacent, matching region upstream in the
t in Figure 3.7, using values from the BLOSUM62
penalty score of —11 for a gap of length 1, is 26
15. The value of —11 as a penalty for a gap of
wn from experience to favor the alignment
ison matrix is used. Choice of the gap
ing suitable choices is presented (see
ence of the gap decreases signifi-

Table 3.10 on p.
cantly the overa

Calculating the Odds Score of an Alignment from the Odds Scores of Individual
Amino Acid Pairs

Sequence alignment scores are based on the individual scores of all amino acid pairs
in the alignment. The odds score for an amino acid pair is the ratio of the observed
frequency of occurrence of that pair in alignments of related proteins over the expect-
ed frequency based on the proportion of amino acids in proteins. Alignments are
built by making possible lists of amino acid pairs and by finding the most likely list
using odds scores. To calculate the odds score for an alignment, the odds scores for
the individual pairs are multiplied. This calculation is similar to finding the proba-
bility of one event AND also a second independent event by multiplying the proba-
bilities (if one event OR another is the choice, then the probabilities are added). Thus,
if the odds score of C/C is 7/1 and that of W/W is 50/1, then the probability of C/C
and W/W being in the alignment is 7/1 X 50/1 = 350/1 (note that the order or posi-
tion in the alignment does not matter). Usually, log odds scores are used in these cal-
culations, and these scores are added to produce an overall log odds score for the
alignment. To perform this optimal alignment using odds scores, the method
assumes that the odds score for matching a given pair of sequence positions is not
influenced by the odds score of any other matching pair; i.e., that there are no corre-
lations expected among the amino acids found at various sequence positions. Anoth-
er way of describing this assumption is that the sequences are each being modeled as
a Markov chain, with the amino acid found at each position not being influenced by
other amino acids in the sequence. Although correlations among sequence positions
are expected, since they give rise to structure and function in molecules, this simpli-
fying assumption allows the determination of a reasonable alignment between the
sequences.
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Although pne may be able to align the two short sequences in Figure 3.7 by eye and to
here shown, the dynamic programming algorithm will automatically place
nger sequence alignments so as to achieve the best possible alignment. The
dynamic programming algorithm is illustrated in Figure 3.8, using the
s an example. Consider building this alignment in steps, starting with an
ned pair of characters from the sequences (V/V) and then sequential-
until the alignment is complete, at each stage choosing a pair from all
at provides the highest score for the alignment up to that point. If
reaghed on the left side of Figure 3.8 (I) has the highest possible
alignment from which it was derived (A) by addition of the
been optimal up to that point in the alignment. If this were
ng alignment other than A was the highest scoring one,
uld also not be the highest scoring alignment, and we
on. Similarly, in Figure 3.8 (II), alignment A must also
ignment (B) by addition of a C/C pair. In this man-
equentially to the first aligned pair that was also an
g building of an optimal alignment in this step-
ut of the entire sequences.

of the three choices that can be made in
ch the next two characters in the next
o a gap in the upper sequence. The
equence. This situation is anal-
and of either continuing a
deuce a gap in one of the
g algorithm to align two short

positions in each §
last possibility,
ogous to perfo
diagonal or o

that was illustrated in Figure 3.9. There
or reaching a particular position, a diagonal move
position i, j with no gap penalties, or a move from any other
n j or row i, with a gap penalty that depends on the size of the gap. For
cesa =aja,...apand b =b; b,...b,, where S;; = S(a;a, . .. a;, bib,..bj) then
1th and Waterman 1981a,b)

Sij=max { S;— ;- + s(aby),

max
x= l(si—x,j_ Wx))
max
y= 1(Sij—y_ Wy)
} (1)

where Sj; is the score at position 7 in sequence a and position j in sequence b, s(a;b;) is the
score for aligning the characters at positions 7 and j, w, is the penalty for a gap of length x
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in sequence a, and w, is the penalty for a gap of length y in sequence b. Note that S;; is a

type of runmiing best score as the algorithm moves through every position in the matrix.
Eventually Sélien all of the matrix positions (all Sj;) have been filled, the best score of the
alignment e found as the highest scoring position in the last row and column (for a
global ali , after correcting for any remaining gap penalties to align the sequence

ends, if 3 To determine an optimal alignment of the sequences from the scoring
matrix, atrix called the trace-back matrix is used (Fig. 3.9). The trace-back
matrix the positions in the scoring matrix that contributed to the highest

overa sequence characters corresponding to these high scoring positions

may, exfito @gap, depending on the information in the trace-back matrix.

An 0ce an be found on the book Web site.
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eotides sequences and amino acids for protein sequences), and a
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1nto that position allowed b e allowed moves are from
rrent position, in the same column o per left diagonal posi-
€] align the sequence characters without introd e is no gap penal-
wever, mg dm above and to the left will introduce gaps, and t ore gap penal-

ased. (a) sl is ore for an al-bl match added to 0 in the upper left p algorithm,

re are two other possible paths to this position shown by the vertical and horizonta obably
have to give a lower sc@¥e because they start at a ga t include an additio pertalty. (b) Trial values
for s12 are calculated €al-b2 match to s11 and subtract
a penalty for a gap gap penalties and so likely cannot yield a high-
er score than tri by the trial moves indicated. The best score should be
since all other moves include gap penalties. (d) Trial values of s22
, 521, and s12, and from the top row and left end column. s22 will be the best
cluding adding the score for an a2-b2 match to s11, or to s21 less a single gap penalty.

2. Magdprum possible values are calc
in® account anasize

reach each matrix position is kept. These short paths, which represent extending the alignment to another matching pair,
with or without gaps, are recorded in another matrix called the trace-back matrix, illustrated below. For example, if mov-
ing from s11 to s21 gave the highest score of all moves to s21, then the corresponding region of the matrix will appear as
shown.

4. The paths in the trace-back matrix are joined to produce an alignment. In the example shown, the highest-scoring matrix
position in the sequence comparison matrix is located, in this case s44, and the arrows are then traced back as far as pos-
sible, generating the path shown. The corresponding alignment A is shown below the matrix. More than one alignment
may be possible if there is more than one path from the highest scoring matrix position. As an example, s43 could also be
a high-scoring position, generating trace-back alignment B, an alignment that includes a gap opposite a2. Another gap may
also be placed opposite b4, which has no matching symbol. Scoring end gaps is optional in the alignment programs. If

Legend continues.
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gap al a2 a3 a4 gap ail a2 a3 a4

gap 0 1 gap |2 gaps |3 gaps |4 gaps gap 0 1gap |2 ggps 3 gaps |4 gaps
\l

b1 1 gap b1 1gap s11::: s21
b2 |2 gaps b2 |2gaps| s12
b3 |3 gaps b3 |3 gaps
b4 |4 gaps b4 |4 gaps
2a. 2d.
gap al a2 a3 a4 gap al a2 a3 a4
gap 0\ 1 gap(|2 gaps |3 gaps |4 gaps gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 1 gap-’ltsﬂ Y b1 1gap | s11 531
b2 |2 gaps b2 |2 gaps s12:l|; séZ
b3 |3 gaps b3 |3 gaps
b4 |4 gaps b4 |4 gaps
2b. 3. Part of trace back matrix
gap al a2 a3 a4 gap al a2 a3 a4
gap 0 1 gap, |2 gaps |3 gaps |4 gaps gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 1gap 531 b1 1gap | s11 -4 s21 s31 s41
b2 |2 gapsk- s1v2 b2 |2gaps| s12 s22 s32 s42
b3 |3 gaps b3 |[3gaps| s13 s23 s33 s43
b4 |4 gaps b4 |4gaps| s14 s24 s34 s44

4, Trace back matrix

gap al a2 a3 a4

gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 |1gap | s11 ¥ s21B| s31 | s41

b2 |2gaps| s12 s22 s32 s42

b3 [3gaps| s13 | s23A| s33_| s43 f
b4 |4 gaps| s14 s24 s34 s44

Alignment A: al a2 a3 a4
b1 b2 b3 b4

Alignment B: al a2 a3 a4 -
bt - b2 b3 b4

included in this case, alignment B would be disfavored by an additional gap penalty. In addition to this series of alignments,
or so-called clump of alignments starting from the highest scoring position, there will be other possible alignments start-
ing from other high-scoring matrix positions, and these may also have multiple pathways through the scoring matrix, each

representing a different alignment. Note that these alignments are global alignments because they include the entire
sequences.
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Figure 3.10. Formal description of the dynamic programming algorithm.
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de Global or Local Seq
F gnment: Needleman-Wunsch Algé

The amic programming method as described ab
seq ces, as described by Needleman and Wunsch (19 mathe-
patically and extended to include animproved scoring syS mith and Waterman
98 0 calculated by adding the current

ons and subtracting gap penalties, if applicable.

a positive or negative score, or 0. The Needleman-Wunsch
e the number of matches between the sequences along the entire
cquences. Gaps may also be present at the ends of sequences, in case there is
@sequence left over after the alignment. These end gaps are often, but not always, given
a gap penalty. The effect of these penalties is illustrated below. An example of a global
alignment of two short sequences calculated by hand using the algorithm is shown on the
book Web site. The example also reveals that more than one alignment may be equally as

likely.

jonment of

Local Alignment: Smith-Waterman Algorithm

A modification of the dynamic programming algorithm for sequence alignment provides
a local sequence alignment giving the highest-scoring local match between two sequences
(Smith and Waterman 1981a,b). Local alignments are usually more meaningful than glob-
al matches because they include patterns that are conserved in the sequences. They can also
be used instead of the Needleman-Wunsch algorithm to match two sequences that may
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have a matched region that is only a fraction of their lengths, that have different lengths,
or where one sequence is a fragment or subsequence of the other. The rules
scoring matrix values are slightly different, the most important differences
ring system must include negative scores for mismatches, and (2) when a
ming scoring matrix value becomes negative, that value is set to zero,
t of terminating any alignment up to that point. The alignments are pro-
the highest-scoring positions in the scoring matrix and following a
positions up to a box that scores zero. The mathematical formula-
gramming algorithm is revised to include a choice of zero as the
osition. For two sequencesa = aja,...a,andb=Db;b,...
1b,..bj), then (Smith and Waterman 1981a)

Hjj=max { Hj—,;— + s(ab)),

max (H; -, ;j — wy),
x=1
max (Hi,j—y - Wy))
y=1

(2)

sequence b, s(a,b)) is the
penalty for a gap of length x
ence b.

and Smith-Waterman
book Web site.

where Hj; is

erence between the Ne
alignment of the same two seque

es a Local Align
Alignment Progra

nt Program Always Produce a Local Align

sed on the above Smith-Waterman local align-
ucing an optimal alignment, this feature alone does not
nment will be produced. The scoring matrix or match and mismatch
e gap penalties chosen also influence whether or not a local alignment is
ned. Similarly, a program based on the Needleman-Wunsch algorithm can also
return a local alignment depending on the weighting of end gaps and on other scoring
parameters. Often, one can simply inspect the alignment obtained to see how many gaps
are present. If the matched regions are long and cover most of the sequences and obvious-
ly depend on the presence of many gaps, the alignment is global. A local alignment, on the
other hand, will tend to be shorter and not include many gaps, just as in the example given
on the book Web site. However, these tests are quite subjective, and a more precise method
of knowing whether a given program and set of scoring parameters will provide a local or
global alignment is required. Looking ahead in the chapter for a moment, the best way of
knowing is by looking at what happens when many random or completely unrelated
sequences are aligned under the chosen conditions. As the length of the random sequences
being aligned increases, the score of a global alignment will just increase proportionally.
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This is easy {o see. Because a global alignment matches most of the sequence, and the neg-
ative mismgfch score and gap penalties are deliberately chosen to be small in comparison
to match sg in order to provide a long alignment, only matches count and the score has
to be proy nal to the length.

If usi ing matrix, a matrix that gives on the average a positive score to each

aligned ombined with a small enough gap penalty to allow extension of the
align poorly matched regions, will give a global alignment. Conversely, for
the log egative mismatch score and gap penalties are chosen to balance the

posi and to prevent the alignment growing into regions that do not
ma SCObi atrix in this case will on the average give a negative value to

pns, e gap penalty will be large enough to prevent gaps from

ment. al alignment score of random sequences does not increase
0 seque because the positive score of matches is offset by the
' penalty s case, it may be shown by theory and experiment that
ocal rand increases much more slowly, and proportionally to
m of the ence lengths. It is this different behavior of the
ent score of rg ength that distinguishes global and local align-

S.
One may well 3 her | use a sequence alignment program
based on the gloh A4 ed on the local alignment algorithm?
The answer is th oth e same alignment with the same
scoring system they w1 pable approach is to use a pro-
gram based oy 1ate algorith ad, and then to choose the
scoring syste, mall changes in M can abruptly change an align-
ATe Ve the bioinformatics literature
scoring systems 11 ed. The rest of this chap-
provide a suitable guide for maK ices.

onal Developg
Alignments

t and Use of the Dynamic Programming ence

eman and Wunsch and Smith and Waterman, the dynam-
ithm was used for sequence alignments scored on the basis of the
1dentity of sequence characters. An alternative method is to score alignments
on differences between sequences and sequence characters; i.e., how many changes
are required to change one sequence into another. Using this measure, the greater the dis-
tance between sequences, the greater the evolutionary time that has elapsed since the
sequences diverged from a common ancestor. Hence, distance scores provide a more bio-
logically natural way to compare sequences than do similarity scores. Using a distance
scoring scheme, Sellers (1974, 1980) showed that the dynamic programming method
could be used to provide an alignment that highlighted the evolutionary changes. Smith
et al. (1981) and Smith and Waterman (1981b) showed that alignments based on a simi-
larity scoring scheme could give a similar alignment. This analysis is discussed further on
the book Web site. Conversion between distance and similarity scores is discussed in
Chapter 6.
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Improvement in Speed and Memory Requirement for the Dynamic
Algorithm

gramming methods for sequence alignments originally required between
n X man * steps and storage in several matrices of size n X m, where n is the length
ence (Needleman and Wunsch 1970; Waterman et al. 1976; Smith and
n the book Web site, a series of improvements in this algorithm that
f steps and amount of memory required are described. These steps
number of steps in the alignment algorithm by Gotoh (1982); (2)
t ok memory required to a linear function of sequence length
ility to find near-optimal alignments (Chao et al. 1994) and
g et al. 1991); and (4) ability to find the best-scoring alter-
de alignments of the same sequence positions (Water-
990; Huang and Miller 1991).

ound by giving the matrix position that begins with
matrix positions that are affected by this change
ore and the path leading to it provide an alter-
ot include the same sequence matches as were
and Eggert 1987). Alternative local align-
he SIM algorithm) that includes the
and Miller 1991).

The alignment pro-
grams listed in Table
3.1 include these fea-
tures.

nts are found b
mprovements lis

Global and Loca

An example g Llocal alionments b8 ge repressor proteins using the
programs G} n-Wunsch algorithm) and

an algorithm) is shown ote that the proteins are
the carboxy-terminal domain, ecion required for
interactions and a self-cleavage func ace induction. In
these @ plementations of the Needleman-Wunscl n algorithms,
the ents found in the carboxy-terminal domain a he Smith-
W3 an method (B) only reports the most alike regionss Ocus on a
lo€al ali method shows the entire
e of similarity due to the longer align-

implementation of the SIM algorithm for finding multiple
ing) alignments in DNA and protein sequences (Huang and Miller
uted in the FASTA package from W. Pearson. The program is also available
eb sites (see Table 3.1). Two features of these alignments are noteworthy: First, the
highest-scoring alignment is similar to that found by the GAP program using a different
amino acid substitution matrix and different gap penalties, with some minor variations in
the more dissimilar regions and extension of the alignment farther into the amino-termi-
nal domains. Second, by design, the alternative alignments never align the same amino
acids and, in this example, the second and third alignments score much lower than the first
one. These observations that strongly aligning regions are not significantly influenced by
the scoring system, and that alternative high-scoring alignments are not possible, add con-
vincing support that the initial alignment represents true similarity between these
sequences. Another example of an alignment of these same sequences using ALIGN with a
different scoring system is given on page 116.
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A. GAP (Needleman-Wunsch algorithm)
Percent Similarity: 44.651 Percent Identity: 36.279
1 MSTKKKPLTQEQLEDARRL KAI YEKKKNELGLSQESVADKMGMGQSGVGA 50
1 MNT ........ QLMGER. IRARRKK LKIRQAALGKMVGVSNVAISQ 37
51 LFNGINALNAYNAALLAKI LKVSVEEFSPSIAREIYEMYEAVSMQPSLRS‘IOO
38 WERSETEPNGENLLALSKA LQCSPDYLLKGDLSQTNVAYHS RHEPRG 84
101 EYEYPVFSHVQAGMFSPEL RTFTKGDAERWVSTTKKASDSAFWLEVEGNS 150
.SYPL | SWVSAGQWMEA\} EPYHKRA | ENWHDTTVDClsEDéFWLDVCGDS 132
151 MTAPTGSKPSFPDGML ILV DPEQAVEPGDFCIARLGGD EFTFKKL ! RDS 199

MI LV DPEVEPRNGKLVVAKLEGENEATFKKLVMDA 180

133 MTAPAG LSIPEG
200 GQVF LQTIl_TTCl)TTI\llIi PCNE SCSVVGKV I ASQWPEET FG 237
181 GRKFLKPLNPQYPMIEINGNCKI IGVVVDAKLAN .LP 216

B. BESTFIT (Smith-Waterman algorithm)
Percent Similarity: 58.871 Percent Identity: 48.387

104 YPVFSHVQAGMFSPELRTFTKGDAERWVSTTKKASDSAFWLEVEGNSMTA 153

86 YPL | SWVSAGQWMEAVEPYHKRA I ENWHDTTVDCSEDS FWLDVQGDSMTA 135

QAVEPGDFC I ARLGGD EFTFKKL | RDSGQV 202

PE
[ [0 0= [ [
PEVEPRNGKLVVAKLEGENEATFKKLVMDAGRK 183

154 TTGSKPSFPD(lil\llIL i I|_
136 PAG. .LSIPEGMI ILVD

PLNPQYPM| PCNESCSVVGKV 1AS 229
Il—’ll_l!lll’(ll\l(ll’l\lllll EINGNCK | | GVVVDA 210

Figure 3.11. Example of local alignment of phage \ I and phage P22 ¢2 repressors by dynamic programming using the GCG
GAP (Needleman-Wunsch algorithm) and BESTFIT (Smith-Waterman algorithm) programs. The log odds form of the
PAM120 amino acid substitution matrix was used. PAM120 is optimal for proteins that are ~40% similar. The alignment
reveals that the proteins are similar in the carboxy-terminal domain. The penalty for opening a gap in one of the sequences is
11 and for extending the gap 8; these were the default values assigned by the programs. Gaps at the unaligned ends of sequences
were also weighted. In the program output, percent identity indicates the number of identical amino acids in the alignment,
and percent similarity, the number of similar amino acids. Similar amino acids are defined by high-scoring matches between
the amino acid pairs in the substitution matrix, and were defined at the time the program was run. The most similar pairs were
indicated by a , less similar pairs by a .’ and unrelated pairs by a space, ’, between the amino acid pairs. Although these
dynamic programming programs provide a single optimal alignment, it is important to realize that a series of alignments are
usually possible. Other programs, such as ALIGN in the FASTA set (Table 3.1 ALIGN-SITES), provide a user-specified num-
ber of alignments (see Fig. 3.12). Additionally, the alignments depend on the method used by the program to convert the trace-
back matrix into an alignment. GCG programs GAP and BESTFIT provide a method for printing two extremes of alignment,
depending on whether gaps are favored in one sequence or the other. These options are called high road and low road.

USE SCORING MATRICES AND GAP PENALTIES IN SEQUENCE ALIGNMENTS

Amino Acid Substitution Matrices

Protein chemists discovered early on that certain amino acid substitutions commonly
occur in related proteins from different species. Because the protein still functions with
these substitutions, the substituted amino acids are compatible with protein structure and
function. Often, these substitutions are to a chemically similar amino acid, but other
changes also occur. Yet other substitutions are relatively rare. Knowing the types of
changes that are most and least common in a large number of proteins can assist with pre-
dicting alignments for any set of protein sequences, as illustrated in Figure 3.13. If related
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Figure 3.12. Example of LALIGN program for finding multiple local alignments of two protein sequences. Three indepen-
dent alignments of the phage N and P22 repressors are shown. The amino acid substitution matrix used was the log odds form
of the Dayhoff PAM250 matrix provided with the program, with a gap opening penalty of —12 and a gap extension penalty

of —2.

LALIGN finds the best local alignments between two sequences
version 2.0u64 March 1998

Please cite:
X. Huang and W. Miller (1991) Adv. Appl. Math. 12:373-381

Comparison of:

(A) lamcl.pro LAMCl REFORMAT of: cipro.pro from: 1 - 237
(B) p22c2.pro ©P22C2 REFORMAT of: p22c2.pro from: 1 - 216
using matrix file: pam250.mat, gap penalties: -12/-2

34.0% identity in 206 aa overlap; score: 338

30 40 50 60 70 80
LAMC1 KKNELGLSQESVADKMGMGQSGVGALFNGINALNAYNAALLAKILKVSVEEFSPSIAREI

P22C2 RRKKLKIRQAALGKMVGVSNVAISQWERSETEPNGENLLALSKALQCSPDYLLKGDLSQ
20 30 40 50 60 70

90 100 110 120 130 140
LAMC1 YEMYEAVSMQPSLRSEYEYPVFSHVQAGMFSPELRTFTKGDAERWVSTTKKASDSAFWLE

P22C2 NVAYHSRHEPRG ————— SYPLISWVSAGQWMEAVEPYHKRAIENWHDTTVDCSEDSFWLD
80 90 100 110 120

150 160 170 180 190 200
LAMC1 VEGNSMTAPTGSKPSFPDGMLILVDPEQAVEPGDFCIARLGGD-EFTFKKLIRDSGQVFL
P22C2 VQGDSMTAPAG—-LSIPEGMIILVDPEVEPRNGFLVVAKLEGENEATFKKLVMDAGRKFL
130 140 150 160 170 180

210 220 230
LAMCl1 QPLNPQYPMIPCNESCSVVGKVIASQO
P22C2 RPLNPQYPMIEINGNCKIIGVVVDAK

i%0 200 210

17.8% identity in 90 aa overlap; score: 37

20 30 40 50 60 70
LAMCl RRLEKAIYEKKKNELGLSQESVAD~KMGMGQSGVGALFNGINALNAYNAALLAKILRKVSVE

32 Tele cene sne snse s Sa. a2, . 23 3.

P22C2 KKLKIRQAALGKMVGVSNVAISQWERSETEPNGENLLALSKALQCSPDYLLKGDLSQTNV
20 30 40 50 60 70

80 90 100
LAMC]1 EF-SPSIAREIYEMYEAVSMQPSLRSEYEY
P22C2 AYHSRHEPRGSYPLISWVSAGOWMEAVEPY
80 90 100

40.0% identity in 15 aa overlap; score: 36

220 230
LAMC1 SCSVVGKVIASQWPE

P22C2 SYPLISWVSAGQWME
90

"

protein sequences are quite similar, they are easy to align, and one can readily determine
the single-step amino acid changes. If ancestor relationships among a group of proteins are
assessed, the most likely amino acid changes that occurred during evolution can be pre-
dicted. This type of analysis was pioneered by Margaret Dayhoft (1978).

Amino acid substitution matrices or symbol comparison tables, as they are sometimes

called, are used for such purposes. Although the most common use of such tables is for
comparison of protein sequences, other tables of nucleic acid symbols are also used for
comparison of nucleic acid sequences in order to accommodate ambiguous nucleotide
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Alignment
sequence A Tyr Cys Asp Ala
sequence B Phe Met Glu Gly
BLOSUM®62 matrix value 3 -1 2 0

Total score for alignment of sequence A with sequence B
=3-1+2+0=4

Figure 3.13. Use of amino acid substitution matrix to evaluate an alignment of two protein
sequences. The score for each amino acid pair (Tyr/Phe, etc.) is looked up in the BLOSUM62 matrix.
Each value represents an odds score, the likelihood that the two amino acids will be aligned in align-
ments of similar proteins divided by the likelihood that they will be aligned by chance in an align-
ment of unrelated proteins. In a series of individual matches in an alignment, these odds scores are
multiplied to give an overall odds score for the alignment itself. For convenience, odds scores are
converted to log odds scores so that the values for amino acid pairs in an alignment may be summed
to obtain the log odds score of the alignment. In this case, the logarithms are calculated to the base
2 and multiplied by 2 to give values designated as half-bits (a bit is the unit of an odds score that has
been converted to a logarithm to the base 2). The value of 4 indicates that the 4 amino acid align-
ment is 242 = 4-fold more likely than expected by chance.

characters or mo different periods of evolution-
both across the top of a
with a score that reflects how
in an alignment of related
B is always assumed to
assumption is made
etic tree is usual-
the product

stitution Matrices (Percent Accepted Mutation or

amily of matrices lists the likelihood of change from one amino acid to another in
omologous protein sequences during evolution. There is presently no other type of scor-
ing matrix that is based on such sound evolutionary principles as are these matrices. Even
though they were originally based on a relatively small data set, the PAM matrices remain
a useful tool for sequence alignment. Each matrix gives the changes expected for a given
period of evolutionary time, evidenced by decreased sequence similarity as genes encoding
the same protein diverge with increased evolutionary time. Thus, one matrix gives the
changes expected in homologous proteins that have diverged only a small amount from
each other in a relatively short period of time, so that they are still 50% or more similar.
Another gives the changes expected of proteins that have diverged over a much longer peri-
od, leaving only 20% similarity. These predicted changes are used to produce optimal
alignments between two protein sequences and to score the alignment. The assumption in
this evolutionary model is that the amino acid substitutions observed over short periods of
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istory can be extrapolated to longer distances. The BLOSUM matrices (see
d on scoring substitutions found over a range of evolutionary periods and
itutions are not always as predicted by the PAM model.

PAM matrices, each change in the current amino acid at a particular site
dependent of previous mutational events at that site (Dayhoft 1978).
Thus, th of change of any amino acid a to amino acid b is the same, regard-
anges at that site and also regardless of the position of amino acid a
mino acid substitutions in a protein sequence are thus viewed as a
iddgn Markov models in Chapter 4), characterized by a series of
that a change from one state to another does not depend
te. Use of this model makes possible the extrapolation of
over a relatively short period of evolutionary time to

evolutionary

reveal that
In derivi

ices, amino acid substitutions that occur in a group
ing 1572 changes in 71 groups of protein sequences
ese changes are observed in closely related pro-
that do not significantly change the function
utations,” defined as amino acid changes
were first organized into a phylogenet-
ber of changes of each amino acid
ese numbers useful for sequence
ch amino acid was needed.

of related sequences, the
er by a factor, called the

analysis, inform
Relative mut

ups. By these
Trp were

en used to gener-
all possible amino acid changes.
a Markov model, the mutation at each site
s mutations, the changes predicted for more distantly
e undergone N mutations could be calculated. By this model, the
ould be multiplied by itself N times, to give transition matrices for com-
equences with lower and lower levels of similarity due to separation of longer peri-
ods of evolutionary history. Thus, the commonly used PAM250 matrix represents a level
of 250% of change expected in 2500 my. Although this amount of change seems very large,
sequences at this level of divergence still have about 20% similarity. For example, alanine
will be matched with alanine 13% of the time and with another amino acid 87% of the
time.

The percentage of remaining similarity for any PAM matrix can be calculated by sum-
ming the percentages for amino acids not changing (Ala versus Ala, etc.) after multiplying
each by the frequency of that amino acid pair in the database (e.g., 0.089 for Ala) (Dayhoff
1978). The PAM120, PAMS80, and PAM60 matrices should be used for aligning sequences
that are 40%, 50%, and 60% similar, respectively. Simulations by George et al. (1990) have
shown that, as predicted, the PAM250 matrix provides a better-scoring alignment than
lower-numbered PAM matrices for distantly related proteins of 14—27% similarity.

e above amino aci
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PAM matgices are usually converted into another form, called log odds matrices. The
resents the ratio of the chance of amino acid substitution by two different
e that the change actually represents an authentic evolutionary variation at
that site ( merator), and the other that the change occurred because of random
sequence of no biological significance (the denominator). Odds ratios are con-
to give log odds scores for convenience in multiplying odds scores of
alignment by adding the logarithms (Fig. 3.13).

Example: Calculations for obtaining the log odds score for changes between Phe and
Tyr at an evolutionary distance of 250 PAMs

1. Of 1572 observed amino acid changes, there were 260 changes between Phe and
Tyr. These numbers were multiplied by (1) the relative mutability of Phe (see
text), and (2) the fraction of Phe to Tyr changes over all changes of Phe to any
other amino acid (since Phe to Tyr and Tyr to Phe changes are not distinguished
in the original mutation counts, sums of changes are used to calculate the frac-
tion) to obtain a mutation probability score of Phe to Tyr. A similar score was
obtained for changes of Phe to each of the other 18 amino acids, and also for the
calculated probability of not changing at all. The resulting 20 scores were
summed and divided by a normalizing factor such that their sum represented a
probability of change of 1%, as illustrated in Table 3.2.

In this matrix, the score for changing Phe to Tyr was 0.0021, as opposed to a
score of Phe not changing at all of 0.9946, as shown in Table 3.2. These calcula-
tions were repeated for Tyr changing to any other amino acid. The score for
changing Tyr to Phe was 0.0028, and that of not changing Tyr was 0.9946 (not
shown). These scores were placed in the PAM1 matrix, in which the overall
probability of each amino acid changing to another is ~1%, and that of each not
changing is ~99%.

2. The above PAM1 matrix was multiplied by itself 250 times to obtain the distri-
bution of changes expected for 250 PAM:s of evolutionary change. These changes
can include both forward changes to another amino acid and reverse changes to
a former one. At this distance, the probability of change of Phe to Tyr was 0.15
as opposed to a probability of 0.32 of no change in Phe. The corresponding
probabilities for Tyr to Phe at 250 PAMs were 0.20 and 0.31 for no change.

3. The log odds values for changes between Phe and Tyr were then calculated. The
Phe-Tyr score in the 250 PAM matrix, 0.15, was divided by the frequency of Phe
in the sequence data, 0.040, to give the relative frequency of change. This ratio,
0.15/0.04 = 3.75, was converted to a logarithm to the base 10 (log;¢3.75 = 0.57)
and multiplied by 10 to remove fractional values (0.57 X 10 = 5.7). Similarly,
the Tyr to Phe score is 0.20/0.03 = 6.7, and the logarithm of this number is
log106.7 = 0.83, and multiplied by 10 (0.83 X 10 = 8.3). The average of 5.7 and
8.3 is 7, the number entered in the log odds table for changes between Phe and
Tyr at 250 PAMs of evolutionary distance.

The log odds from the PAM250 matrix, which is sometimes referred to as the
mutation data matrix (MDM) at 250 PAMs and also as MDMg is shown in Fig-
ure 3.14. The log odds scores in this table lie within the range of —8 to +17. A
value of 0 indicates that the frequency of the substitution between a matched
pair of amino acids in related proteins is as expected by chance; a value less than
0 or greater than 0 indicates that the frequency is less than or greater than that
expected by chance, respectively. Using such a matrix, a high positive score
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between two amino acids means that the pair is more likely to be found aligned
in sequences that are derived from a common ancestor, i.e., homologous, than
in unrelated or nonhomologous sequences. The highest-scoring replacements
are for amino acids whose side chains are chemically similar, as might be expect-
ed if the amino acid substitution is not to impede function. In the original data,
the largest number of observed changes (83) was between Asp (D) and Glu (E).
This number is reflected as a log odds score of +3 in the MDM. Many changes
were not observed. For example, there were no changes between Gly (G) and
Trp (W), resulting in a score of —7 in the table.

ormalized probability scores for
any other amino acid (or of not
1 and PAM250 evolutionary dis-

PAM250

0.04
0.01
0.02
0.01
01

eto Leu
Phe to Lys 0.0000
Phe to Met 0.0001
Phe to Phe 0.9946
Phe to Pro 0.0001
Phe to Ser

0.01
0.15
0.05
1.00

*Approximate since scores are rounded off.

The multiplication of two PAM1 matrices to give a
PAM2 matrix. Only three rows and columns are shown
for illustrative purposes.

aal aa2 aa3 - aal aa2 aa3 -
aal| a b ¢ aal| a b ¢
aa2| d e f % aa2|d e f
a3l g h i aa3| g h i
! 1
aal aa2 aa3 - A=a’+bd+cg+...
aal|A B C B=ab+be+ch+...
_ aa2|D E F C=ac+bf +dc +...
TaS G H I D=da+ed +fg +..,etc.
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Figure 3.14. The log odds form (the mutation data matrix or MDM) of the PAM250 scoring matrix. Amino acids are
grouped according to the chemistry of the side group: (C) sulfhydryl, (STPAG) small hydrophilic, (NDEQ) acid, acid amide
and hydrophilic, (HRK) basic, (MILV) small hydrophobic, and (FYW) aromatic. Each matrix value is calculated from an odds
score, the probability that the amino acid pair will be found in alignments of homologous proteins divided by the probabili-
ty that the pair will be found in alignments of unrelated proteins by random chance. The logarithm of these ODDS scores to
the base 10 is multiplied by 10 and then used as the table value (see text for details). Thus, +10 means the ancestor probabil-
ity is greater, O that the probabilities are equal, and —4 that the alignment is more often a chance one than due to an ances-
tor relationship. Because these numbers are logarithms, they may be added to give a combined probability of two or more
amino acid pairs in an alignment. Thus, the probability of aligning two Ys in an alignment YY/YY is 10 + 10 = 20, a very sig-
nificant score, whereas that of YY with TP is —2 —5 = — 7, a rare and unexpected alignment between homologous sequences.

A

coring matrix was modified in an attempt to improve the
scores for matching a particular amino acid were normalized to
an and standard deviation, and all amino acid identities were given the same
o provide an equal contribution for each amino acid in a sequence alignment (Grib-
skov and Burgess 1986). These modifications were included as the default matrices for the
GCG sequence alignment programs in versions 8 and earlier and are optional in later ver-
sions. They are not recommended because they will not give an optimal alignment that is
in accord with the evolutionary model.

Choosing the Best PAM Scoring Matrices for Detecting Sequence Similarity. The
ability of PAM scoring matrices to distinguish statistically between chance and biological-
ly meaningful alignments has been analyzed using a recently developed statistical theory
for sequences (Altschul 1991) that is discussed later in this chapter. As discussed above,
each PAM matrix is designed to score alignments between sequences that have diverged by
a particular degree of evolutionary distance. Altschul (1991) has examined how well the
PAM matrices actually can distinguish proteins that have diverged to a greater or lesser
extent, when these proteins are subjected to a local alignment.
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In information theory, this score is called the average mutual information content per
pair, and the sum over all pairs is the relative entropy of the matrix (termed H). The rela-
tive entropy will be a small positive number. For the PAM250 matrix the number is +0.36,
for PAM 120, +0.98, and for PAM 160, +0.70. In general, all other factors being equal, the
higher the value of H for a scoring matrix, the more likely it is to be able to distinguish real
from chance alignments.

Analysis of the Dayhoff Model of Protein Evolution as Used in PAM Matrices. As
outlined above, the Dayhoff model of protein evolution is a Markov process. In this model,
each amino acid site in a protein can change at any time to any of the other 20 amino acids
with probabilities given by the PAM table, and the changes that occur at each site are inde-
pendent of the amino acids found at other sites in the protein and depend only on the cur-
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rent amino ac'd at the site. The assumptions that underlie the method of constructing the
matrix have been challenged (for discussion, see George et al. 1990; States
1). First, it is assumed that each amino acid position is equally mutable,
whereas, in ites vary considerably in their degree of mutability. Mutagenesis hot spots
are well olecular genetics, and variations in mutability of different amino acid
sites in pr, ell known.

amino acids in similar proteins from different species are ones that
structure and function and the less conserved are in sites that can
nt effect on function. Thus, there are many factors that
es of amino acid changes that occur in proteins. Wilbur
del of evolution (see box, below) and has shown that it
ade in the way that the PAM matrices are calculated.

Test of Markov Model of Evolution in Proteins

To test the model, Wilbur addressed a major criticism of the PAM scoring matrix,
namely that the frequency of amino acid changes that require two nucleotide changes
is higher than would be expected by chance. About 20% of the observed amino acid
changes require more than a single mutation for the necessary codon changes. This
fraction is far greater than would be expected by chance.

To correct for changes that require at least two mutations, Wilbur recalculated the
PAMI matrix using only amino acid substitution data from 150 amino acid pairs that
are accountable by single mutations. To accomplish this calculation, he used a refined
mathematical model that provided a more precise measure of the rate of substitution.
He then estimated frequencies of the other 230 amino acid substitutions reachable
only by at least two mutations, and compared these frequencies to the values calcu-
lated by Dayhoff, who had assumed these were single-step changes. If these numbers
agreed, argued Wilbur, then the PAM model used to produce the Dayhoff matrix is
a reliable one. In fact, the Dayhoff values exceeded the two-step model values by a
factor of about 117. One source of discrepancy was the assumption that the two-step
changes were a linear function of evolutionary time over short evolutionary periods
of 1 PAM (average time of 1 PAM = 10 my), whereas, because two mutations are
required to make the change, a quadratic function is expected. With this correction
made to the Dayhoff calculations for amino acid substitutions requiring two muta-
tions, agreement with the two-step model improved about 10-fold, leaving another
11.7-fold unaccounted for.

Wilbur analyzed the remainder by the covarion hypothesis (Fitch and Markowitz
1970; Miyamoto and Fitch 1995), in which it is assumed that only a certain fraction
of amino acid sites in a protein are variable and that one site influences another.
Thus, a change in one site may influence the variability of others. This model seems
to be reasonable from many biological perspectives. The prediction of this hypothe-
sis is that the frequency of two-step changes would be overestimated because we did
not take into account the failure of many sites to be mutable. Using a reasonable esti-
mate of 0.3 for the fraction of the sites that could change, the effect on the Dayhoff
calculations for frequencies of two-step changes would be 3.3-fold. The remaining
discrepancy in the 11.7-fold ratio between Dayhoff values and two-step values may
be attributable to variations in mutation rates from site to site, or to the exclusion of
certain amino acids at a particular site. In conclusion, Wilbur (1985) has shown that
the Dayhoff model for protein evolution appears to give predictable and consistent
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results, but that frequencies of change between amino acids that require two muta-
tional steps must be calculated as a two-step process. Failure to do so generates errors
due to variations in site-to-site mutability. George et al. (1990) have counterargued
that it has never been demonstrated that two independent mutations must occur,
each becoming established in a population before the next appears.

thg PAM scoring matrices is that they are not more useful
impler matrices, such as one based on a chemical group-
Ithough alignment of related proteins is straightforward
bol comparison scoring scheme, alignments of less-
peculative (Feng et al. 1985). These matrices and the
useful for finding more distantly related sequences
ecent changes in the way that members of protein
ad 9). Once a family has been identified, family-
and there is no point in using these general
¢ matrix representing a section of aligned
ao a section of aligned sequences with
pest tools to search for more family
members.

Another criti
prior to scori
relationships

o phylogenetic relationships
of determining ancestral
er 6. Early on in the Dayhoff

heme for the branches in the
in distal parts of the tree.
pary distance between
d to produce a tree

ships has been provided (George et

atrices have been criticized because they are based on a
ated proteins. The Dayhoff data set has been augmented to include
ein database (Gonnet et al. 1992; Jones et al. 1992). The ability of the Dayhoft
ces to identify homologous sequences has also been extensively compared to that of
other scoring matrices. These comparisons are discussed on the book Web site.

Blocks Amino Acid Substitution Matrices (BLOSUM)

The BLOSUMBS62 substitution matrix (Henikoff and Henikoff 1992) is widely used for scor-
ing protein sequence alignments. The matrix values are based on the observed amino acid
substitutions in a large set of ~2000 conserved amino acid patterns, called blocks. These
blocks have been found in a database of protein sequences representing more than 500
families of related proteins (Henikoff and Henikoff 1992) and act as signatures of these
protein families. The BLOSUM matrices are thus based on an entirely different type of
sequence analysis and a much larger data set than the Dayhoff PAM matrices.
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These protein families were originally identified by Bairoch in the Prosite catalog. This
es lists of proteins that are in the same family because they have a similar
ction. For each family, a pattern of amino acids that are characteristic of
rovided. Henikoff and Henikoff (1991) examined each Prosite family for
gapped amino acid patterns (blocks) that were present in each family
sed to identify members of that family. To locate these patterns, the
otein family were searched for similar amino acid patterns by the

4 amino acids long located in all sequences. These initial
er ungapped patterns (blocks) between 3 and 60 amino
ROTOMAT program (http://www.blocks.thcrc.org).
in all of the sequences in each family, they could be
the same family. Thus, the family collections were
atabases for more proteins with these same con-

provided a type of multiple sequence align-
that were observed in each column of the
substitutions were then scored for all
e a scoring matrix, the BLOSUM
ion. As previously described for
rithms of odds scores of the
ivided by the frequency
1n Figure 3.15.

in the blocks, however, can
ccur in the most closely
from the most alike
efore scoring the

nment could t
igned patterns i
matrix, indicatin

ch family. To reduce this do
sequences were grouped together

ese matrices differ
pairs are scored relative to the less
protein sequences, they provide a greater or
re common and less common amino acid pairs. The abil-
SUM matrices to distinguish real from chance alignments and to
ny members as possible of a protein family has been determined (Henikoff
enikoff 1992).

Two types of analyses were performed: (1) an information content analysis of each
matrix, as was described above for the PAM matrices, and (2) an actual comparison of the
ability of each matrix to find members of the same families in a database search, discussed
below. As the clustering percentage was increased, the ability of the resulting matrix to dis-
tinguish actual from chance alignments, defined as the relative entropy of the matrix or the
average information content per residue pair (see above), also increased. As clustering
increased from 45% to 62%, the information content per residue increased from ~0.4 to
0.7 bits per residue, and was ~1.0 bits at 80% clustering. However, at the same time, the
number of blocks that contributed information decreased by 25% between no clustering
and 62% clustering. BLOSUMS62 represents a balance between information content and
data size. The BLOSUM62 matrix is shown in Figure 3.16.
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Figure 3.15. Derivation of the matrix values in the BLOSUMG62 scoring matrix. As an example of
the calculations, if a column in one of the blocks consisted of 9 A and 1 S amino acids, the follow-
ing is true for this data set (see Henikoff and Henikoff 1992).

1. Since the original sequence from which the others were derived is not known, each column posi-
tion has to be considered a possible ancestor of the other nine columns. Hence, there are
8+7+6...+1 = 36 possible AA pairs (fso) and 9 possible AS pairs (f5s) to be compared.

2. There are 20+19+18+ ... +1 = 210 possible amino acid pairs.

3. The frequency of occurrence of an AA pair, qaa = faa/(faa + fas) = 36/(36+9) = 0.8, and that
of an AS pair, qas = fas/(faa + fas) = 9/(36+9) = 0.2.

4. The expected frequency of A being in a pair, pa = (qaa + qas/2) = 0.8 + 0.2/2 = 0.9, and that
Ofps = qAS/2 =0.1.

5. The expected frequency of occurrence of AA pairs, ey = pa X pa = 0.9 X 0.9 = 0.81, and that
Of AS, exs = 2 X ps X pa = 2 X 0.9 X 0.1 = 0.18.

6. The matrix entry for AA will be calculated from the ratio of the occurrence frequency to the
expected frequency. For AA, ratio = qaa/ eaa = 0.8/0.81 = 0.99, and for AS, ratio = qas/ eas =
0.2/0.18 = 1.11.

7. Both ratios are converted to logarithms to the base 2 and then multiplied by 2 (1/2 bit units).
Matrix entry for AA, sya = log,(qaa/ eas) = —0.04, and for AS, sps = logx(qas/ eas) = 0.30.
These logarithms are both rounded to 1 '/, bit unit.

erval BLOSUM matrices that
sely related or more distantly related rep-
an representing the changes observed in very alike
that were n% alike to give a BLOSUM-n matrix, the new
rix represented the changes observed in sequences that were between
nd m% alike. The idea behind these matrices was to have a set of matrices cor-
onding to amino acid changes in sequence blocks that are separated by different evo-
lutionary distances.

Comparison of the PAM and BLOSUM Amino Acid Substitution Matrices

There are several important differences in the ways that the PAM and BLOSUM scoring
matrices were derived, and these differences should be appreciated in order to interpret the
results of protein sequence alignments obtained with these matrices. First, the PAM matri-
ces are based on a mutational model of evolution that assumes amino acid changes occur
as a Markov process, each amino acid change at a site being independent of previous
changes at that site. Changes are scored in sequences that are 85% similar after predicting
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Figure 3.16. The BLOSUM62 amino acid substitution matrix. The amino acids in the table are grouped according to the
chemistry of the side group: (C) sulfthydryl, (STPAG) small hydrophilic, (NDEQ) acid, acid amide, and hydrophilic, (HRK)
basic, (MILV) small hydrophobic, and (FYW) aromatic. Each entry is the logarithm of the odds score, found by dividing the
frequency of occurrence of the amino acid pair in the BLOCKS database (after sequences 62% or more in similarity have been
clustered) by the likelihood of an alignment of the amino acids by random chance. The denominator in this ratio is calculat-
ed from the frequency of occurrence of each of the two individual amino acids in the BLOCKS database and provides a mea-
sure of a chance alignment of the two amino acids. The actual/expected ratio is expressed as a log odds score in so-called half-
bit units, obtained by converting the odds ratio to a logarithm to the base 2, and then multiplying by 2. A zero score means
that the frequency of the amino acid pair in the database is as expected by chance, a positive score that the pair is found more
often than by chance, and a negative score that the pair is found less often than by chance. The accumulated score of an align-
ment of several amino acids in two sequences may be obtained by adding up the respective scores of each individual pair of
amino acids. As with the PAM250-derived matrix, the highest-scoring matches are between amino acids that are in the same
chemical group, and the very highest-scoring matches are for cysteine—cysteine matches and for matches among the aromat-
ic amino acids. Compared to the PAM160 matrix, however, the BLOSUMG62 matrix gives a more positive score to mismatch-
es with the rare amino acids, e.g., cysteine, a more positive score to mismatches with hydrophobic amino acids, but a more
negative score to mismatches with hydrophilic amino acids (Henikoff and Henikoff 1992).

a phylogenetic history of the changes in each family. Thus, the PAM matrices are based on
prediction of the first changes that occur as proteins diverge from a common ancestor dur-
ing evolution of a protein family. Matrices that may be used to compare more distantly
related proteins are then derived by extrapolation from these short-term changes, assum-
ing that these more distant changes are a reflection of the short-term changes occurring
over and over again. For each longer evolutionary interval, each amino acid can change to
any other with the same frequency as observed in the short term. In contrast, the BLOSUM
matrices are not based on an explicit evolutionary model. They are derived from consider-
ing all amino acid changes observed in an aligned region from a related family of proteins,
regardless of the overall degree of similarity between the protein sequences. However, these
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proteins are kn
try. The evolu
share a comm

wn to be related biochemically and, hence, should share common ances-
ary model implied in such a scheme is that the proteins in each family
igin, but closer versus distal relationships are ignored, as if they all were
derived equa the same ancestor, called a starburst model of protein evolution (see
Chapter 6). the PAM matrices are based on scoring all amino acid positions in
related seq ereas the BLOSUM matrices are based on substitutions and con-
served po ks, which represent the most alike common regions in related
sequence model is designed to track the evolutionary origins of proteins,
el is glesigned to find their conserved domains.

atrices

elated Gonnet et al. (1992), Benner et al. (1994), and
DSUM matrices, a number of other amino acid sub-
ducing protein sequence alignments, and several
or a more complete list and comparison, see
parison of simple chemical properties of
titutions found in secondary structural
are designed to align proteins on the
of some such fe ! n an evolutionary model, they are
ot particularly sui ona n be very useful, however, for
discovering struct onal re elationships among pro-
teins. A sequence ogram that f these tables has been
found to be pa tul for detecting elationships (Argos 1987;
Rechi ive 'CO the usefulness of various
g similar sequences in a
p structure that are

Or aligning seque
pase, or for aligning similar sé
ook Web site.

Table873. Criteria used in amino acid scoring matrices for seque

atch and all others as a mismatch.
amber of nucleotide changes to change a codon for
> due to Fitch (1966), and also with added information based

o acid side chains (Feng et al. 1985). A similar matrix based on the

genctic code is the only factor influencing amino acid substitutions has been pro-

er et al. 1994).

ces based on chemical similarity of amino acid side chains, molecular volume, and polarity and

hydrophobicity of amino acid side chains (see Vogt et al. 1995).

. Amino acid substitutions in structurally aligned three-dimensional structures (Risler et al. 1988;

matrix JO93, Johnson and Overington 1993). A similar matrix was described by Henikoff and

Henikoff (1993). Sander and Schneider (1991) prepared a similar matrix based on these same substi-

tutions but augmented by substitutions found in proteins which are so similar to the structure-solved

group that they undoubtedly have the same three-dimensional structure.

5. Gonnet et al. (1994) have prepared a 400 X 400 dipeptide substitution matrix for aligning proteins
based on the possibility that amino acid substitutions at a particular site are influenced by neighbor-
ing amino acids, and thus that the environment of an amino acid plays a role in protein evolution.

6. Jones et al. (1994) have prepared a scoring matrix specifically for transmembrane proteins. This
matrix was prepared using an analysis similar to that used for preparing the original Dayhoff PAM
matrices, and therefore provides an estimate of evolutionary distances among members of this class of
proteins.
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Nucleic Acid PAM Scoring Matrices

cid scoring matrices have been used to score protein sequence alignments,
ing matrices for scoring DNA sequence alignments have also been devel-
matrix can incorporate ambiguous DNA symbols (see Table 2.1) and
mutational analysis, which reveals that transitions (substitutions
A and G or between the pyrimidines C and T) are more probable than
tions between purine to pyrimidine or pyrimidine to purine) (Li
substjtution matrices may be used to produce global or local align-

eloped a series of nucleic acid PAM matrices based on a
to that used to generate the Dayhoff PAM scoring matri-
ve the sensitivity of similarity searches of sequence
e used to score nucleic acid alignments. The advantage
based on a defined evolutionary model and that the
es obtained by local alignment programs may be

PAMI1 mutation matrix representing 99%
ionary distance (1% mutations) was first
any nucleotide to any other are equal-
at equal frequencies, the four diag-
are 0.99 whereas the six other
lues are chosen so that the
trix is 1% (3 X 0.00333
transition is threefold more
elements corresponding to
se for the two possible
% (0.006 + 0.002 +

produce log
increasing

on matrix for an evolutionary dis-
corresponds to a probability of a change at
ide position of 1%

A. Model of uniform mutation rates among nucleotides

A G T C
A 0.99
G 0.00333 0.99
T 0.00333 0.00333 0.99
C 0.00333 0.00333 0.00333 0.99
B. Model of threefold higher transitions than transversions
A G T C
A 0.99
G 0.006 0.99
T 0.002 0.002 0.99
C 0.002 0.002 0.006 0.99

Values are frequency of change at each site, or of no change for all base
combinations.
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evolutionary djstances. In terms of an alignment, the probability (s;;) of obtaining a match
between nuclg@tides i and j, divided by the random probability of aligning 7 and j, is given
by

sij = log (pi Mj; / pi pj) (4)

tation matrix given in Table 3.4, and p; and p; are the frac-
otide, assumed to be 0.25. The base of the logarithm can
Itiplying every value in the matrix by the same constant.
ility of the matrix to distinguish among significant and
. The resulting tables with s;; expressed in units of bits
off to the nearest whole integer are shown in Table

og odds matrices at an evolutionary distance of
AM1 matrix by itself n times. The ability of
cleotide matches in an alignment, desig-
ted using the equation

(5)

shown the log odds val-
ing evolutionary dis-
niform rate of mutation among shown is the per-
tides that will be changed at that dis ore will be 100
ue. This percentage is not as great as the cted back-
ver longer time periods. Also shown are the at each

ch scores for PAM

ide substitution matrix at 1 PAM of evo-

A. Model of uniform mutation rates among nucleotides

A G T C
A 2
G —6 2
T —6 —6 2
C —6 —6 —6 2
B. Model of threefold higher transitions than transversions
A G T C
A 2
G -5 2
T -7 -7 2
C -7 -7 —5 2

Units are log odds scores obtained as described in the text.
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Table 3.6. Properties of nucleic acid substitution matrices assuming a uniform rate
of mutdtion among nucleotides

Percentage Match score Mismatch score Average information
difference (bits) (bits) per position (bits)

9.4 1.86 —3.00 1.40
21.3 1.66 —1.82 0.92
36.5 1.34 —1.04 0.47
55.2 0.84 —0.44 0.13

0.8 0.65 —0.30 0.07

pade:

quite similar, it is better to use a lower scoring matrix
of the small PAM matrices is relatively higher. As dis-
d Dayhoff PAM matrices for more-alike protein
ill be obtained.

atch scores in the biased mutational model in
onservative substitutions. Thus, the bias
jion than the uniform mutation model
when aligning & 30% different) and may be used
for this purpog 991
3. The scoring g ge evolutid

aligned nuc hen sequen
ment is ne ® sionificant.

de very little information per
iy, a much longer align-

atrices, the avet pn content shown is only
oring matrix that matche difference between the
ample, for sequences that are 21% entical), the matrix
P A ance should be used. One cannot know he percentage
simila difference between two sequences actually done, thus
a trig gnment must first be done. States et al. (1991) cient a
givglt scoring matrix is at achieving the highest possible scO gRTNG (WO sequences
that Jzas arity score has been obtained
§€ore can be obtained by using another PAM

gquicnces at that level of similarity.

Gap Penaltig

e inclusion of gaps and gap penalties is necessary in order to obtain the best possible
alignment between two sequences. A gap opening penalty for any gap (g) and a gap exten-

Table 3.7. Properties of nucleic acid substitution matrices assuming transitions are threefold
more frequent than transversions

Percentage Match score  Transition  Transversion Average information

PAM distance  difference (bits) score (bits)  score (bits) per position (bits)
10 9.3 1.86 —2.19 —3.70 1.42
25 21.0 1.66 —1.06 —2.46 0.96
50 35.8 1.36 —0.37 —1.60 0.54
100 53.7 0.89 0.06 —0.86 0.19

150 62.9 0.57 0.16 —0.52 0.08
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sion penalty for each element in the gap (r) is most often used, to give a total gap score wy,
according to iequation

wy =g+ rx (6)

f the gap. Note that in some formulations of the gap penalty, the
— 1) is used. Thus, the gap extension penalty is not added to the
thefigap size is 2. Although this difference does not affect the
ed§ito distinguish which method is being used by a particular
esults are to be obtained. In the former case, the penal-
eas in the latter case this value is g. The values for these
e the scores in the scoring matrix that is used. Thus,
250 is expressed in units of log;, which is approxi-

, but if thig onverted to 1/2 bits, the same gap penalties would

appropria

e range of scores in the substitution matrix,
ely, if the gap penalty is too low compared
e alignment in order to align as many
a ienment programs will suggest gap
1 give ost situations. In the GCG and
ng mat g a way that includes default
e values of ¢ alicnment programs are
e. When decidin§g ot local alignment programs,
ies sho oh to provide a local align-
of suitable valt g Table 3.10 on p. 114.
6) and Pearson (1996, 1998) se of appropriate gap
pvide an improved local alignment analysis. These
iadies ribed in detail in the following section.
Ma atician Peter Sellers (1974) showed that if seqt
in tegM$’of distances instead of similarity between sequence ppeal-
ing jiterpretation of gaps is po ance is the nu ges that must be
mgde S the number of mutations that
genes during evolution; the greater the dis-
e sequences in evolution. In this case, substitution
of 1. Notice that the distance score plus the similarity score for
qual to 1. Sellers proved that this distance formulation of sequence align-
a desirable mathematical property that also makes evolutionary sense. If three
sequences, a, b, and ¢, are compared using the above scoring scheme, the distance score as
defined above is described as a metric that satisfies the triangle inequality relationship

never appear,
matrix scores, g

FASTA program g
gap penalties. E
shown on the

ormulated

d(a,b) + d(b,c) = d(a)c) (7)

where d(a,b) is the distance between sequences a and b, and likewise for the other two d
values. Expressed another way, if the three possible distances between three sequences are
obtained, then the distance between any first pair plus that for any second pair cannot
underscore the third pair. Violating this rule would not be consistent with the expected
evolutionary origin of the sequences. To satisfy the metric requirement, the scoring of
individual matches, mismatches, and gaps must be such that in an alignment of two iden-
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tical sequencgs a and a’, d(a,a’) must equal 0 and for two totally different sequences b and
t equal 1. For any other two sequences a and b, d(a,b) = d(b,a). Hence, it
t the distance score for changing one sequence character into a second is
onverse score for changing the second into the first, if the distance score
is to remain a metric and to make evolutionary sense. The above rela-
n by Sellers to be true for gaps of length 1 in a sequence alignment. He
smallest number of steps required to change one sequence into the
d by the dynamic programming algorithm. The method was simi-
e fol the Needleman-Wunsch global and Smith-Waterman local
mer methods found the maximum similarity between two
imum distance found by the Sellers analysis.
) and Smith and Waterman (1981a,b) showed that gaps
d in an alignment and still provide a distance metric for
jon, the gap penalty was required to increase as a func-
as made that a single mutational event involving a
ikely to have occurred than # single gaps. Thus, to
gth >1 being found, the penalty for a gap of
individual gaps. The simplest way of imple-
e the gap score w, be a linear function of
pening penalty (g) and a smaller gap
or w, = g + rx, where x is the
is referred to as an affine gap
gnalties should also work,
¢ score is less than x indi-
ocap length has now become
ap penalty functions have

penalty in the
provided that

g charac-
ame penalty score as gaps
ot be given any penalty score. End gaps
ematical formulation of both the similarity and
alignment for producing both global and local alignments.
em in distance calculations can result in a failure to obtain distance
ake evolutionary sense (Smith et al. 1981). Examples of using or of not using
gap penalties in the Needleman-Wunsch alignment are shown on the book Web site.
Without scoring end alignments, gaps may be liberally placed at the ends of alignments by
the dynamic programming algorithm to increase the matching of internal characters, as
opposed to including these gaps as a part of the overall alignment.

If comparing sequences that are homologous and of about the same length, it makes a
great deal of sense to include end gap penalties to achieve the best overall alignment. For
sequences that are of unknown homology or of different lengths, it may be better to use an
alignment that does not include end gap penalties (States and Boguski 1991). If one
sequence is expected to be contained within the other, it is reasonable to include end gap
penalties only for the shorter sequence. However, for any test alignment, these end penal-
ties should be included in at least one alignment to assure that they do not have an effect.
It is also important to use alignment programs that include them as an option.
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Parametric Sequence Alignments

ds that find a range of possible alignments in response to varying the
scoring syste d for matches, mismatches, and gaps, called parametric sequence com-
et al. 1992; Waterman 1994 and references therein), have been devel-
oped. Ther, effort to use scores such that the results of global and local types of
sequence rovide consistent results. For example, if two sequences are similar
s, both global and local methods should provide the same align-
al (Gusfield and Stelling 1996), which can perform this type of

httpll/theory.cs.ucdavis.edu/~stevenk. The program runs on a
pdows. When provided with two sequences and some of
gap score, the program displays graphically the types of
ining parameters are varied. Another sequence align-
etric sequence alignment is the Bayes block aligner,

enalties on Local Alignment Scores

g effect of varying the parameters of the
d protein sequences. To simplify the
mber of parame DE gap was used. If a very high mis-
match penalty is a pos , with zero gap penalty, the
local alignment o ces will n@ d is defined as the longest
common subseq global alignme g parameters will have
no mismatches gaps SO P imize the matches, and the

seote of the ut of the sequences is pre-
e length of the seq mpared.
arying alignment is penalizing gaf e best scoring local
*n the sequences will be one that optin® en matches and
1smatg vithout any gaps. If both mismatches and nalized, the

dVEe 111d

resultig gnment will also be a local alignment that con of exact
matclies. In the above two cases, the alignment score of the hig alfgiment
willfhcrease as the logamni ence ese same conditions,

t petween the sequences will be negative.
[ o mic dependence of the local similarity score on
he score of the corresponding global alignment is zero.
atch and gap penalties are varied between zero and a high negative
ber of possible alignments of random DNA sequences is very large.

ce general conclusions can be drawn from this theoretical study of random sequence
alignments: (1) Use of high mismatch and gap penalties that are greater than a match score
will find local alignments, of which there are relatively few in number; (2) when the penal-
ty for a mismatch is greater than twice the score for a match, the gap penalty becomes the
decisive parameter in the alignment; and (3) for a mismatch penalty less than twice the
score of a gap and a wide range of gap penalties, there are a large number of possible align-
ments that depend on both the mismatch and gap penalty scores.

Distinguishing local from global alignments has an important practical application. A
local alignment is rarely produced between random sequences. Accordingly, the signifi-
cance of a local alignment between real sequences may be readily calculated, as described
below. In contrast, the significance of a global alignment is difficult to determine since a
global alignment is readily produced between random sequences.
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Optimal Combinations of Scoring Matrices and Gap Penalties for Finding Related Proteins

of combinations of scoring matrices and gap penalties for identifying relat-
uding distantly related ones, has been compared (Feng et al. 1985; Doolit-
and Henikoff 1993; Pearson 1995, 1996, 1998; Agarwal and States 1998;
8). The method generally used is to start with a database of protein
sequeng into families, either based on sequence similarity or structural simi-
apters 7 and 9, respectively). A member of a family is then selected
uence in a search of the entire database from which the sequence

asically use the dynamic programming algorithm and a
penalties to produce alignment scores. Details of these

ding related proteins based on either sequence or
ed by examining the full range of amino acid sub-

ence analysis is the development of
ignment between DNA or protein sequences. For
T, such as two proteins that are clearly in the same family,
ot necessary. A significance question arises when comparing two
at are not so clearly similar but are shown to align in a promising way. In such
e, a significance test can help the biologist to decide whether an alignment found by
the computer program is one that would be expected between related sequences or would
just as likely be found if the sequences were not related. The significance test is also need-
ed to evaluate the results of a database search for sequences that are similar to a sequence
by the BLAST and FASTA programs (Chapter 7). The test will be applied to every sequence
matched so that the most significant matches are reported. Finally, a significance test can
also help to identify regions in a single sequence that have an unusual composition sug-
gestive of an interesting function. Our present purpose is to examine the significance of
sequence alignment scores obtained by the dynamic programming method.

Originally, the significance of sequence alignment scores was evaluated on the basis of
the assumption that alignment scores followed a normal statistical distribution. If
sequences are randomly generated in a computer by a Monte Carlo or sequence shuffling
method, as in generating a sequence by picking marbles representing four bases or 20
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amino acids
in sequence

ut of a bag (the number of each type is proportional to the frequency found
the distribution may look normal at first glance. However, further analysis
t scores of random sequences will reveal that the scores follow a different
the normal distribution called the Gumbel extreme value distribution
is section, we review some of the earlier methods used for assessing the
ments, then describe the extreme value distribution, and finally discuss
s for this type of analysis with some illustrative examples.
is of alignment scores is much better understood for local align-
ignmients. Recall that the Smith-Waterman alignment algorithm
produce a local alignment are designed to reveal regions of
a positive alignment score. In random or unrelated
s are rarely found. Hence, their presence in real sequence
probability of their occurring by chance alignment of
alculated. The significance of the scores of global align-
ficult to determine. Using the Needleman-Wunsch
ere are many ways to produce a global alignment
es of many different alignments may be quite
es are compared using a global alignment
g the tendency of the global algorithm to
pent of the statistical significance of a
an being used as a strict test for
used to align sequences that
¢ related. The method will
use this information to
or an evolutionary analysis.

atch as many ch
global alignment
sequence homolg
are of approxi
conveniently

Jeh
gnme

e length a

gequence charac

nts

n ge global alignment programs use the Needle¥

and g ing system that scores the average match of an
paigh@s a positive number. Hence, the score of the align} related
seffliences grows.piopeiiic aseailenCe addition, there are many
& e scoring system chosen, and small
petice a different alignment. Thus, finding the best
ow to assess its significance is not a simple task, as reflect-
udies in the literature.
1989) provided a set of means and standard deviations of global alignment
between random DNA sequences, using mismatch and gap penalties that produce a
linear increase in score with sequence length, a distinguishing feature of global alignments.
However, these values are of limited use because they are based on a simple gap scoring
system. Abagyan and Batalov (1997) suggested that global alignment scores between unre-
lated protein sequences followed the extreme value distribution, similar to local alignment
scores. However, since the scoring system that they used favored local alignments, these
alignments they produced may not be global but local (see below). Unfortunately, there is
no equivalent theory on which to base an analysis of global alignment scores as there is for
local alignment scores. For zero mismatch and gap penalties, which is the most extreme
condition for a global alignment giving the longest subsequence common to two
sequences, the score between two random or unrelated sequences P is proportional to
sequence length 1, such that P = ¢n (Chvital and Sankoff 1975), but it has not proven pos-
sible to calculate the proportionality constant ¢ (Waterman and Vingron 1994a).

ent algorithm
mino acid
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the significance of a Needleman-Wunsch global alignment score, Dayhoff
hoff et al. (1983) evaluated Needleman-Wunsch alignment scores for a large
mized and unrelated but real protein sequences, using their log odds scor-
PAMs and a constant gap penalty. The distribution of the resulting ran-
d a normal distribution. On the basis of this analysis, the significance of
etween two apparently related sequences A and B was determined by
standard deviation of the alignment scores of 100 random permuta-
with 100 of B, conserving the length and amino acid composition of
n A jnd B is significant, the authors specify that the real score
ardideviations greater than the mean of the random scores. This
the probability that two unrelated sequences would give
s.D.s) and 2.87 X 107° (5 s.D.s). In evaluating an align-
o0 maximize the alignment score: First, a constant called
ue in the scoring matrix and, second, the gap penalty
hen performed after the score between A and B had
PAM250 matrix values vary from —7 to 17 in units
had the effect of increasing the score by the bias
e one amino acid is matched to another. As
It, the alignme gth because there are fewer gaps, assum-
the gap penalty o ptimized alignments on which the sig-
nificance test was g et ame method to compare the sig-
nificance of alig obtaine coring matrices. They used
25-100 pairs of Sequences fo ent.
There are s¢ al problems w1 of which apply to other
S as hedsisexpen he number of computational
nce length because many
blem is much reduced
d, if the amino acid
example, many

ach as the sd
gniments must be done.
mputers and more efficient algoritht

50 8 unusual, and if there is a region of [e
occur §of one or two amino acids), the analysis hird, when
natugalisequences were compared more closely, the patte orm to a
rand®m set of the basic building blocks of sequences but rath® et of sequence
segmentsath atphabet in English sentences.

order in these sentences but rather in a
appens if sentences, which are made up of words,
and, if just the alphabet composition of many sentences is
tich variation is seen. On the other hand, if words are compared, much
ation is found because there are many more words than alphabet characters. If
dom sequences are produced from segments of sequences, rather than from individual
residues, more variation is observed, more like that observed when unrelated natural
sequences are compared. The increased variation found among natural sequences is not
surprising when one thinks of DNA and proteins as sources of information. For example,
protein-encoding regions of DNA sequences are constrained by the genetic code and by
amino acid patterns that produce functional domains in proteins.

Lipman et al. (1984) analyzed the distribution of scores among 100 vertebrate nucleic
acid sequences and compared these scores with randomized sequences prepared in differ-
ent ways. When the randomized sequences were prepared by shuffling the sequence to
conserve base composition, as was done by Dayhoff and others, the standard deviation was
approximately one-third less than the distribution of scores of the natural sequences. Thus,
natural sequences are more variable than randomized ones, and using such randomized



ALIGNMENT OF PAIRS OF SEQUENCES 99

sequences for a significance test may lead to an overestimation of the significance. If,
instead, the y@hdom sequences were prepared in a way that maintained the local base com-
ucing them from overlapping fragments of sequence, the distribution of
er standard deviation that is closer to the distribution of the natural
clusion is that the presence of conserved local patterns can influence the
sts such that an alignment can appear to be more significant than it
his study was done using the Smith-Waterman algorithm with nucle-
ionary note applies for other types of alignments. The final problem
is that the correct statistical model for alignment scores was not

1s have a RANDOMIZATION option, which shuffles the
milarity scores between the unshuffled sequence and each
similarity scores are significantly smaller than the real
pnsidered significant. This analysis is only useful for
e significance of an alignment score and can easily

devised a second method for testing the relat-
pnmodate some local variation. This method
guence, similar regions that are in a dif-
egion such as an active site. As used
all possible segments of a given
he same length from another.
omparison to give a score
§€OTe in standard deviation
equences minus the average
pf the scores from the ran-
computer platforms
ple of the output
hown in Table
ion, thus it

Modeling a Rand

at alignment scores between random sequences fol-
at can be used to test the significance of a score between two
a number of reasons, mathematicians were concerned that this statisti-
ight not be correct. Let’s start by creating two aligned random DNA sequences
rawing pairs of marbles from a large bag filled with four kinds of labeled marbles. The
marbles are in equal proportions and labeled A, T, G, and C to represent an assumed equal
representation of the four nucleotides in DNA. Now consider the probability of removing
10 identical pairs representing 10 columns in an alignment between two random
sequences. The probability of removing an identical pair (an A and another A) is 1/4 X 1/4,
but there are 4 possible identical pairs (A/A, C/C, G/G, and T/T), so that the probability of
removing any identical pair is 4 X 1/4 X 1/4 = 1/4 and that for removing 6 identical pairs
is (1/4)° = 2.4 X 10~ *. The probability of drawing a mismatched pair is 1 — 1/4 = 3/4, and
that of drawing 6/6 mismatched pairs (3/4)° = 0.178. Most random alignments produced
in this manner will have a mixture of a few matches and many mismatches.

The calculations are a little more complex if the four nucleotides are not equally repre-
sented, but the results will be approximately the same. The probability of drawing the same
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3.8. Distribution of alignment scores produced by program RELATE

s @5 43 e ss 3% s e e

L TS T ST S VR ¥

> 125
40301 comparisons of window: 25, mean score: -27.3 (13.34)
matrix file: PAM250

29 segments >= 4 sd above mean

The sequences of two phage repressors were broken down into overlapping 25-amino-
acid segments, and all 40,301 combinations of these segments were compared. The first
column gives the approximate location of the number of standard deviations (13.34)
from the mean score of —27.3. The second column is increasing ranges of the alignment
score, and the third, the number of segment alignment scores, that fall within the range.
Twenty-nine scores were greater than 3 standard deviations from the mean. Thus, these
two sequences share segments that are significantly more related than the average seg-
ment, and the proteins share strong regions of local similarity. In such cases of strong
local similarity, a local alignment program such as LEFASTA, PLFASTA, or LALIGN can
provide the alignments and a more detailed statistical analysis, as described below. Graph
is truncated on right side.
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pair is p, wherg p = pa* + pc® + pg® + pr’, where py is the proportion of nucleotide X.
p is an important parameter to remember for the discussion below. An even more compli-
cated situati when the two random sequences to align have different nucleotide dis-
tributions. y would be to use an average p for the two sequences. This example illus-
trates the f modeling sequence alignments between two different organisms that
have a dif] composition.

ot suitable for predicting the number of sequentially matched posi-
equences of a given length. To estimate this number, a DNA
modeled by coin-tossing experiments (Arratia and Water-
0). Random alignments will normally comprise mixtures
s a series of coin tosses will produce a mixture of heads
series of matches in a sequence alignment with no mis-
sing a coin and coming up with a series of only heads.
t possible score that can be obtained and the proba-
in number of trials. In such models, coins are usu-
ility of a head is equal to that of a tail. The coin
oring a head (H) and g = 1 — p of scoring a
own by Erdos and Rényi to be given by
e of the logarithm is 1/p = 2. For the
0g.2 = 4.605/0.693 = 6.65.
uences a = aj, ay, a3---a, and
eries of heads and tails. If
is a T. The following
of H and T tosses.

a;aaz-—-a,---> HTH ---
b, bybs---b,  where a; =b; and a; = b; only (8)

gest run of matches in the alignment is now e
the coin-tossing sequence, and it should be possib

,only applies to one partic-
ated above by the marble draw. In per-
uences are in effect shifted back and forth with
egions that can be aligned. In addition, the sequences may be
- If two random sequences of length m and n are aligned in this same
¢ same law still applies but the length of the predicted match is log,,,(mn)
atia et al. 1986). If m = n, the longest run of matches is doubled. Thus, for DNA
sequences of length 100 and p = 0.25 (equal representation of each nucleotide), the longest
expected run of matches is 2 X log;,,(n) = 2 X logs100 = 2 X log.100 / log.4 = 2 X 4.605
/ 1.386 = 6.65, the same number as in the coin-tossing experiment. This number corre-
sponds to the longest subalignment that can be expected between two random sequences
of this length and composition.

A more precise formula for the expectation value or mean of the longest match M and
its variance has been derived (Arratia et al. 1986; Waterman et al. 1987; Waterman 1989).

E (M) = logy,(mn) + logy;,(q) + v log(e) — 1/2 9)
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Var [M(n,m)] = [wlogl/p(e)]2/6 + 1/12 (10)

where y = Euler’s number and g = 1 — p. Note that Equation 9 can be simplified

E (M) = logy,,(Kmn) (11)

ds on the base composition.

there are k mismatches in the alignment, except that
i71) appears in the equation (Arratia et al. 1986). K, the
k. The log log term is small and can be replaced by a
ns also suggest that it is not important (Altschul and
have found a better match to Equation 11 when the
expected length of a match. In the example given
e expected length of a match was 6.65. As the
ible to have overlaps on the ends that are
er than 7 becaug e remaining. Hence, the effective length
he sequences is 996). This correction is also used for
e calculation of g ca gorithm discussed in Chapter 7.
Equation 11 ig imp0 the statistical significance of
alignment score, states that or unrelated sequences
increase, the ghest possible 10 be proportional to the
logarithm.g ofethe sequence leng he logarithm of the sequence
0g (nn) = 2 ion 10 also predicts a con-
S of random or unrelatd d this prediction is also
‘riment. It is important to empha aat this relationship
clss se of scoring parameters appropriate ¥ algorithm, such
as 1 fo Yatch and —0.9 for a mismatch, or a scort y the average
aligngdipbsition as negative, and also upon the use of su ies. This
typefOf scoring system gives rise to positive scoring regions O cance of
thgSe sco i i

uses a different parameter, \, where

E (M) = [log, (Kmn)] / \ (12)

Recall that p is the probability of a match between the same two characters, given above as
1/4 for matching a random pair of DNA bases, assuming equal representation of each base
in the sequences. p may also be calculated as the probability of a match averaged over scor-
ing matrix and sequence composition values. Instead, it is N that is more commonly used
with scoring matrix values. The calculation of X and also of K is described below and in
more detail on the book Web site.

It is more useful in sequence analysis to use alignment scores instead of lengths for com-
paring alignments. The expected or mean alignment length between two random sequences
given by Equations 11 and 12 can be easily converted to an alignment score just by using
match and mismatch or scoring matrix values along with some simple normalization pro-
cedures. Thus, in addition to predicting length, these equations can also predict the mean



ALIGNMENT OF PAIRS OF SEQUENCES 103

or expected value of the alignment scores E(S) between random sequences of lengths m and
n. Assessing ftatistical significance then boils down to calculating the probability that an
alignment s between two random or unrelated sequences will actually go above E(S).
Hence, the ted score or mean extreme score is

E(S) = [log,. (Kmn)] / N (13)

athematical result bearing on this question was that the number
the mean score E(S) in Equation 13 could be predicted by
the mean x of the Poisson distribution is given by E(S)

gron The Poisson distribution applies when the probability of
trial is t the number of trials is large (as in comparing many
t sequence to many scrambled versions of a second
uccess but others do not. Some alignments do not
reach or even exceed that score. The Poisson dis-
mber of successes, i.e., 0, 1, 2, 3 ... when the
la P, = e * x" / nl. The probability that no
is therefore approximated by (P, = e ).

X

bandis givenby P (S>x) = 1—-¢ %,

P(S<x)=exp(— E(S9))

= exp (— Kmne ™) (14)
A N
P(S>x) =1 — exp (— Kmne ™) (15)

Aation 15 esti

ater '!e!ween two random

1on described below. The Poisson
ay to estimate K and N from alignment scores
ed sequences by using the fraction of alignments that
alue x (see book Web site).

aps

It was predicted on mathematical grounds and shown experimentally that a similar type of
analysis holds for sequence alignments that include gaps (Smith et al. 1985). Thus, when
Smith et al. (1985) optimally aligned a large number of unrelated vertebrate and viral DNA
sequences of different lengths (n and m) and their complements to each other, using a
dynamic programming local alignment method that allowed for a score of +1 for matches,
—0.9 for mismatches, and —2 for a single gap penalty (longer gaps were not considered in
order to simplify the analysis), a plot of the similarity score (S) versus the log,/p(nm) pro-
duced a straight line with approximately constant variance. This result is as expected in the
above model except that with the inclusion of gaps, the slope was increased and was of the
form
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Smean = 2.55 (log,/p(mn)) — 8.99 (16)

andard deviation o = 1.78. This result was then used to calculate how
iations were between the predicted mean and variance of the local align-
elated sequences and the scores for test pairs of sequences. If the actu-
eeded the predicted Syean by several standard deviations, then the
align d be significant. For example, the expected score between two
unrel engths 2948 and 431, average p = 0.279, was Spean = 2.55 X
log,, —18.99%- 2,55 X (10g.(2948 X 431)/log.(1/0.279)) — 8.99 = 2.55
X 8.99 = 19.1. The actual optimal alignment score between
thg ences o engths was 37.20, which exceeds the alignment score
e dom seq 37.20 — 19.1) / 1.78 = 10.20. Is this number of stan-
significa al. (1985) and Waterman (1989) suggested the use of
e statistic shev’s inequality, which is valid for many proba-
butions: T andom variable exceeds its mean is less than or
9 the square 9 standard deviations from the mean. In this
ple where the 3 deviations above the mean, the probability
/10)*> = 0.01.

Waterman (193
matches, —0.5 fo
scores between
will increase lig
linear relation

with const
many stay
ment scg
al align

9 —

h and gap penalties, e.g., +1 for
penalty, the predicted alignment
pt accurate because the score
arithm of the length. The
11n nature, and the logarithmic
989 ignment scores from a large
d DNA sequences & hs to either the predicted
elationships expected for lo d mismatch and gap
esults provide the mean and standa jsnment score for
cvera g schemes, assuming a constant gap pena
WighSftirther mathematical analysis, it became apf ed scores
be alignment of random and unrelated sequences alled the
Gumbel extreme v istributi i 86; Ka : Altschul 1990). This
st or best score of a variable, such
coin toss discussed previously. Subsequently,
> 1993) further developed the use of this distribution for
ce of ungapped segments in comparisons between a test sequence
database using the BLAST program (for review, see Altschul et al. 1994).
thod is also used for evaluating the statistical features of repeats and amino acid
patterns and clusters in the same sequence (Karlin and Altschul 1990; Karlin et al. 1991).
The program SAPS developed by S. Karlin and colleagues at Stanford University and avail-
able at http://ulrec3.unil.ch/software/software.html provides this type of analysis. The
extreme value distribution is now widely used for evaluating the significance of the score
of local alignments of DNA and protein sequence alignments, especially in the context of
database similarity searches.

and
ces as €
quence lengt
hen the alignme

The Gumbel Extreme Value Distribution

When two sequences have been aligned optimally, the significance of a local alignment
score can be tested on the basis of the distribution of scores expected by aligning two ran-
dom sequences of the same length and composition as the two test sequences (Karlin and
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Altschul 1990; Altschul et al. 1994; Altschul and Gish 1996). These random sequence align-
ment scores f@llow a distribution called the extreme value distribution, which is somewhat
istribution with a positively skewed tail in the higher score range. When a
set of valu variable are obtained in an experiment, biologists are used to calculating
dard deviation of the entire set assuming that the distribution of values
al distribution. For sequence alignments, this procedure would be like
ent alignments, both good and bad, and averaging all of the scores.
eresting alignments are those that give the highest possible scores,
ingerest. The experiment, then, is one of obtaining a set of val-
highest value and discarding the rest. The focus changes
f wanting to know the average of scores of random

ibution. After many alignments, a probability dis-
ed. The goal is to evaluate the probability that a
es will reach the score found between two real
low, the alignment score between the real
score is significant.

experiment, the extreme value dis-
ion in Figure 3.17. The equations
s, Y,,and Y,, are

for the extreme value distribution (17)

Figure 3.17. Probability values for the extreme value distribution (A) and the normal distribution
(B). The area under each curve is 1.
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Y, = 1/V (2m) exp [(— x%)/2] for the normal distribution (18)

th curves is 1. The normal curve is symmetrical about the expectation
0, such that the area under the curve below the mean (0.5) is the same
n (0.5) and the variance ¢* is 1. The probability of a particular value
ribution is obtained by calculating the area under curve B, usually
, often used as an indication of a significant deviation from
and +2 is 0.9544. For the extreme value distribution, the
the value of the Fuler-Mascheroni constant, 0.57722 . . .
lue of > / 6 = 1.6449. The probability that score S will

The area

P(S<x)=exp[—e 7] (19)

d the probabilit

PS=x)=1—exp[ —e 7] (20)

represents the peak or
area above the mean

or larger values of x. As a result, for a variable
ext#eéme values, such a i scores, t ust be greater than
e same level of significance.

1th scores obtained in an analysis. For a vari-
1bution, values of x are used to estimate the mean m and
e distribution, and the probability curve given by Equation 18

Yn = 1/(aV (2m) exp [~ (x — m)*/207] (21)

The probability of a particular value of x can be estimated by using m and o to estimate the
number of standard deviations from the mean, Z, where Z = (x — m)/o. Similarly, Equa-
tions 17 and 20 can be modified to accommodate the extreme values such as sequence
alignment scores

PS=x)=1—exp[— e Mx— W) (22)
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where u is thg mode, highest point, or characteristic value of the distribution, and N\ is
the decay or S@ale parameter. As is apparent in Equation 22, N converts the experimen-
tally measu alues into standard values of x after subtraction of the mode from each

It is qui tforward to calculate u and A, and several methods using alignment
scores ar on the book Web site. There is an important relationship between u
d standard deviation of a set of extreme values. The mean and stan-
nly apply to the normal distribution, but in fact are mathemati-
ility distribution. The mean of any set of values of a variable
sum of the values divided by their number. The mean m
(x), is defined as the first moment of the values of the
is definition, the mean is that number from which the
. The variance o is the second moment of the values
squares of the devations from the mean divided by
— 1). The mean x and standard deviation o of a
e same way, and then u and N can be calculat-
athematical evaluation of the first and sec-
(Gumbel 1962; Altschul and Erickson

X=7/(cV6) =12825/¢ (23)

u=x—vy/A=x—04500 o (24)

introduced. Equation 23 is de of the variance ¢
utions in Figure 3.17, or 1 to 2 erived from the

culated for each extreme value x,
ard deviations from the mean m to each score.
, version 3, programs distributed by W. Pearson (1998).
itten in a form that directly uses z scores to evaluate the probabil-
ular score Z exceeds a value z,

P(Z>z)=1— exp(— e 128252~ 05772 (25)

For sequence analysis, # and N depend on the length and composition of the sequences
being compared, and also on the particular scoring system being used. They can be calcu-
lated directly or estimated by making many alignments of random sequences or shuffled
natural sequences, using a scoring system that gives local alignments. The parameters will
change when a different scoring system is used. Examples of programs that calculate these
values are given below.

For alignments that do not include any gaps, # and A may be calculated from the scor-
ing matrix. The scaling factor \ is calculated as the value of x, which satisfies the condition
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3 pipj e =1 (26)

where p;
sequence
matrix.

re the respective fractional representations of residues 7 and j in the
is the score for a match being i and j, taken from a log odds scoring
teristic value of the distribution, is given by (Altschul and Gish 1996)

u= (InKmn) /A (27)

ngths and K is a constant that can also be calculated from
is value originates from the coin toss analysis that gave
ations 25 and 27 eliminates u and gives the following

P(S=x)=1—exp[—e M~ ¥]

=1 — exp [ — e Ax — (anmn)//\)]

=1 - exp [_ e Ax + anmn] (28)

=1—exp [— Kmne ™ (29)

y also be normalized to pro-
core distribution into the

.17 with u = 0 and ation 28, S’ is calculat-

S" = AS — In Kmn

P(§"=x)=1—exp[—e 7] (31)

ility of a particular normalized score may then be readily calculated. This capa-
depends on a determination of the N and K to calculate the normalized scores S’ by
Equation 30.

The probability function P(S" = x) decays exponentially in x as x increases and P(S" =
x)=1—exp[— e *] —>e * Consequently, an important approximation for Equa-
tions 29 and 31 for the significant part of the extreme value distribution where x > 2 is
shown in Equations 32 and 33. Note that the replacement equations are single and not
double exponentials.

P(S=x) = Kmne ™ (32)

P(S =x)=¢ ™ (33)
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X

Table 3.9. Approximation of P(S"= x) by e ~

x l-exp[ — e *] e™
0 0.63 1

1 0.308 0.368
2 0.127 0.135
3 0.0486 0.0498
4 0.0181 0.0183

alculations using this approximation instead of that given in
9. For x > 2, the estimates differ by less than 2%. The esti-
ovides a quicker method for estimating the significance

A Quick Deter igni Alignment Score

ical work if they are scaled in logarithms to the
fashion does not alter their ability to score
good matches from poor ones, but does
alignment. The actual alignment may
b of the aligned pairs, using matrix
eater than expected for align-

¢, K = 0.1 and \ depends
is in units of bits as described
m of Equation 32 may be
ing p as the probability
andom or unrelated alignments re% or greater

log,p = log, (Kmn e™ ™)

= log, (Kmn) + log,(e ™)

= log, (Kmn) + (log.(e *%))/log.2

= log, (Kmn) — AS/log.2

= log, (Kmn) — S (34)

> the score corresponding to probability P, may be obtained by rearranging terms of
quation 34 as follows

S = log, (Kmn) — log,P
= log, (K/P) + log,(nm) (35)

Since for most scoring matrices K == 0.1 and choosing P = 0.05, the first term is 1, and the
second term in Equation 35 becomes the most important one for calculating the score
(Altschul 1991), thus giving

S = log, (nm) (36)
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The Impor

Example: Using the Extreme Value Distribution to Calculate the Significance of a
Local Alignment

Suppose that two sequences approximately 250 amino acids long are aligned by the
Smith-Waterman local alignment algorithm using the PAM250 matrix and a high
gap score to omit gaps from the alignment, and that the following alignment is found.

FWLEVEGNSMTAPTG
FWLDVQGDSMTAPAG

1. By Equation 36, a significant alignment between unrelated or random
sequences will have a score of S = log,(nm) = log,(250 X 250) = 16 bits.

2. The score of the above actual alignment is 75 using the scores in the Dayhoff
mutation data matrix (MDM) that provides log odds scores at 250 PAMs evo-
lutionary distance.

3. A correction to the alignment score must be made because the MDM table at
250 PAMs is not in bit units but in units of logarithm to the base 10, multiplied
by 10. These MDM scores actually correspond to units of 1/3 bits ([MDM score
in units of log;o] X 10 = [MDM score in bits of log, X log,10 | / 10 = [MDM
score in units of log;o X 10] X 0.333). Thus, the score of the alignment in bits
is 75/3 = 25 and 9 bits greater than the 16 expected by chance. Therefore, this
alignment score is highly significant.

4. Altschul and Gish (1996) have provided estimates of K = 0.09 and A = 0.229
for the PAM250 scoring matrix, for a typical amino acid distribution and for an
alignment score based on using a very high gap penalty. By Equations 3.30 and
3.31,S' = 0.229 X 75 — In (0.09 X 250 X 250) = 17.18 — 8.63 = 8.55 bits, and
P(S’ = 855) =1 — exp [— e ®°°] = 1.9 X 10~* Thus, the chance that an
alignment between two random sequences will achieve a score greater than or
equal to 75 using the MDM matrix is 1.9 X 10~*. Note that the calculated S’ of
8.55 bits in step 4 is approximately the same as the 9 bits calculated by the sim-
pler method in step 3.

5. The probability may also be calculated by the approximation given in Equation
333P(S'>x)=e¢ “=¢ *=19X10""

pe of Scoring Matrix for Statistical Analyses

Using a log odds matrix in bit units simplifies estimation of the significance of an align-
ment. The Dayhoff PAM matrices, the BLOSUM matrices, and the nucleic acid PAM scor-
ing matrices are examples of this type. Such matrices are also useful for finding local align-
ments because the matrix includes both positive and negative values. Another important
feature of the log odds form of the scoring matrix is that this design is optimal for assess-
ing statistical significance of alignment scores. A set of matrices, each designed to detect
similarity between sequences at a particular level, is best for this purpose. Use of a matrix
that is designed for aligning sequences that have a particular level of similarity (or evolu-
tionary distance) assures the highest-scoring alignment and therefore the very best esti-
mate of significance. Thus, lower-numbered PAM matrices are most suitable for aligning
sequences that are more similar. In the above example, the Dayhoff PAM250 matrix
designed for sequences that are 20% similar was used to align sequences that are approxi-
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mately 20% jdentical and 50% similar (identities plus common replacements in the align-

rtant parameter of the scoring matrix for statistical purposes is the expect-
erage amino acid pair, calculated as shown in Equation 37. This value
if alignment scores for the matrix are to be used for statistical tests, as

ed value
should

e fractional occurrences of each amino acid (p; and p;). This
over all of the amino acid pairs. The expected values of the
hoff PAM, BLOSUM, JTT, JO93, PET91, and Gonnet92
uirement.

> pip;si (37)
=1

example, for th, bits E = —1.64 and for PAM160 in one-
If bits, E = —1. ese matrices may be used in the above
statistical analysi gn d using the BLOSUM62 matrix may
also be subject e test, d the PAM matrices. The test is
valid because t ids is negative (E = —0.52).

e for a rané
Because the alf-bit units, th aht when a score exceeds
6/0 =

WoTmation, sco ave appeared in a new for-

hany types of programs. iven in Figure 3.18. The
1) the scale of the matrix and the ical parameter \; (2)
e g score of the average amino acid pair in egative assures

n content or
ed from
alties. The BLO-

that alignments will be emphasized (Eq. 37);

ent of the matrix (Eq. 3) giving the ability of the ma

ungelated sequence alignments, not shown here; and (4) sul
M i

Significance g ents

#om sequences of varying lengths are optimally aligned with the Smith-Water-
dynamic programming algorithm using an appropriate scoring matrix and gap penal-
ties, the distribution of scores also matches the extreme value distribution (Altschul and
Gish 1996). Similarly, in optimally aligning a given sequence to a database of sequences,
and after removing the high scores of the closely related sequences, the scores of the unre-
lated sequences also follow this distribution (Altschul et al. 1994; Pearson 1996, 1998). In
these and other cases, optimal scores are found to increase linearly with log (#), where n is
the sequence length. Equation 36 predicts that the optimal alignment score (x) expected
between two random or unrelated sequences should be proportional to the logarithm of
the product of the sequence lengths, x = log,(nm). If the sequence lengths are approxi-
mately equal, n = m, then x should be proportional to log,(n*) = 2 log,(n), and the pre-
dicted score should also increase linearly with log(n). log,(n) is equivalent to log(n)
because, to change the base of a logarithm, one merely multiplies by a constant. In com-
paring one sequence of length m to a sequence database of length n, m is a constant and
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This matrix was produced by "pam" Version 1.0.6 [28-Jul-93]

PAM 120 substitution matrix, scale = 1n(2)/2 = 0.346574 [1/2 bits}]

Expected score = -1.64, Entropy = 0.979 bits
Lowest score = -8, Highest score = 12
A R N D C Q E G H I L K M F P S T W Y V B Z X *
3-3-1 60~3-1 0 1-3-1-3-2-2-41 1 1-7-4 0 0--1-1-8
-3 6-1-3-4 1-3-41-2-4 2-1-5-1-1-21-5-3-2-1-2-8
-1~-1 4 2-5 0 1 ¢ 2~-2~-4 1-3~-4-2 1 0-4-2-3 3 0~-1-8
0-3 2 5-7 1 3 0 06-3-5-1-4-7-3 0-1-8-5-3 4 3 -2-8
-3 -4 -5 -7 9-7-7-4-4-3-7-7-6-6~-4 0 -3 -8-1-3~6~7 -4 -8
-1 1 0 1~7 6 2 -3 3~3-2 0~-1-6 0~-2-2-6-5=-3 0 4 -1 -8
¢6-3 1 3-7 2 5-1-1-3-4+-1-3-7-2-1-2-8-5-3 3 4 -1 -8
1-4 0 0-4-3~1 5-4-4-5-3-4-5-21-1-8-6-2 0-2-2-8
-3 1 2 0-4 3-1-4 7 -4 «3 «2-4-3-1-2-3=-3-1-3 1 1-2-8
~-1-2-~2-3-3-3-3-4~-4 6 1-3 1 0-3-2 0«6=-2 3-3-3-1-8

-3 -4 -4-5-7-2-4-5-31 5-4 3 0-3-4-3-3-2 1-+-4-3-2--8
-2 2 1-1-7 0-1-3-2-3-45 0-7-2-1-1-5-5-4 0--1-2-8
-2 -1-3-4-6-1-3-4-41 3 0 8+-1«3-2-1-6-4 1-4-2-2-8
-d =5 «4 -7 -6 -6 =7 -5 -3 0 0-7 -1 8 ~5 -3 -4 -1 4 -3 -5 -6 -3 -8
1~1-2-3-4 0-2-2-1-3-3-2-3-5 6 1-1-7-6-2-2-1-2-8
1-11 0 0-2-11-2-2-4-1-2-31 3 2~2=3-2 0-1-1-8
1-2 0-1-3-2-2-1-3 0-3-1-1-4-1 2 4-6-3 0 0-2-1-8
-7 1-4-8-8-6-8-8-3-6-3-5-6-1-7-2-612 -2 -8 -6 -7 -5 -8
-4 -5 -2 -5-1-5-5-6-1-2-2-5-4 4-6-3-3-2 8-3-3-5-3-8
¢-3-3-3-3-3-3-2-3 3 1-4 1-3-2-2 0-8-3 5-3~3~1 ~8
-2 3 4-6 0 3 0 1-3-4 0-4-5-2 0 0-6-3-3 4 2-1-8
-1-1 0 3-7 4 4-2 1-3-3-1-2-6-1-1-2-7-5-3 2 4 -1 -8
-1 -2 -1 -2-4-1-1-2-2+~1-2-2-2~3=-2-1=~1+5=3-1-1-1-2-8
-8 -8 -8 -8 -8 -8-8-8-8-8-8-8-8--8-8-8--8--8-8--8--8-8--8 1

s NMPpDAID GBI OBOODZ WY % iHWHIBHR

Figure 3.18. Example of BLASTP format of the Dayhoff MDM giving log odds scores at 120 PAMs. Note that the matrix has
mirror-image copies of the same score on each side of the main diagonal. Besides the standard single-letter amino acid sym-
bols, there are four new symbols, B, Z, X, *. B is the frequency-weighted average of entries for D and N pairs, Z similarly for
Q and E entries, X similarly for all pairs in each row, and * is the lowest score in the matrix for matches with any other

sequence character that may be present.

as log(n). This log(n) relationship has been
istribution of optimal local alignment scores that have
mith et al. 1985; Arratia et al. 1986; Collins et al. 1988; Pearson
additional references, see Altschul et al. 1994). Thus, the same statistical
s described above for assessing the significance of ungapped alignment scores may
also be used for gapped alignment scores. Methods for calculating the parameters K and A
for a given combination of scoring matrix methods and gap penalties are described on the
book Web site.

Methods for Calculating the Parameters of the Extreme Value Distribution

In the analysis by Altschul and Gish (1996), 10,000 random amino acid sequences of vari-
able lengths were aligned using the Smith-Waterman method and a combination of the
scoring matrix and a reasonable set of gap penalties for the matrix. The scores found by
this method followed the same extreme value distribution predicted by the underlying sta-
tistical theory. Values of K and \ were then estimated for each combination by fitting the
data to the predicted extreme value distribution. Some representative results are shown in
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Table 3.10. Readers should consult Tables V=VII in Altschul and Gish (1996) for a more
detailed list offthe gap penalties tested.

Altschul a ish (1996) have cautioned users of these statistical parameters. First, the
parameters } enerated by alignment of random sequences that were produced assum-
ing a partig ino acid distribution, which may be a poor model for some proteins.
Second, t of A and K cannot be estimated easily. Finally, for gap costs that give
values of, e optimal alignment length is a significant fraction of the sequence
lengths ource of error called the edge effect. The effect occurs when the

expectg mert is a significant fraction of the sequence length, and, as dis-
cussed tsihetWeen sequences that overlap at their ends cannot be com-
pleteg engt en subtracted from the sequence length before \ is esti-

ma rectio 1e, \ may be overestimated.
pr gap p hould also not be construed to represent the best
en pair of or the only choices, simply because the statistical

¢ available
¢. In trying
¥ gap penalty
ally change fro
program is bei
p penalty and p
ncreased ability
respect, Altschul

of choosing a gap penalty remains a matter of rea-
ing the gap penalty, it is important to recognize
pents produced will have more gaps and will
 of alignment, even though a local align-
H values are generated by a very large
(Table 3.10), thus suggesting an
unrelated sequences. In this
point increasing the gap

or combi 2 matrices and affine

Gap opening
Tix penalty® penalty®

IM50 o0? 0-o0
OSUMS50 15 8-15
BLOSUMS50 11 8-11

Gap extensio:

PAM250 oo? 0-0 0.229 0.09 0.23
PAM250 15 5-15 0.06 0.215 0.20
PAM250 10 8-10 0.031 0.175 0.11
PAM250 11 1 — — —

Dashes indicate that no value can be calculated because the relationship between alignment
score and sequence length is linear and not logarithmic, indicating that the alignment is glob-
al, not local, in character. Statistical significance may not be calculated for these gap penalty-
scoring matrix combinations. The corresponding values for gap penalties define approximate
lower limits that should be used.

* A value of « for gap penalty will produce alignments with no gaps.

® The penalty for a gap opening of length 1 is the value of the gap opening penalty shown.
The gap extension penalty is not added until the gap length is 2. Make sure that the alignment
program uses this same scheme for scoring gaps. The extension penalty is shown over a range
of values; values within this range did not change K and A.

©The entropy in units of the natural logarithm.
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alty does not change the parameters, indicating that most gaps in their
probably of length 1. However, reducing the gap penalty can also allow
be extended and create a higher scoring alignment. Eventually, howev-
al alignment score between unrelated sequences will lose the log length
equence length and become a linear function. At this point, gap penal-
seful for obtaining local alignments and the above statistical rela-
r valid.

ue, the better the matrix can distinguish related from unrelated
of H, the longer the expected alignment. These conditions
ent region is required, such as testing a structural or func-
oducing an alignment. Conversely, scoring parameters
oduce shorter, more compact alignments. If H < 0.15,
this case, the sequences have a shorter effective length
ds of the sequences may not be completed. This edge
but was corrected for in the above table (Altschul

extension pe
simulations
an alignme

lating the significance of an alignment score
lobal alignment score. The theory does not
ed for global alignments. Transforma-
o each entry or by multiplying each
of a series of global alignments.
of such scores as there is for

for database similarity
e statistical significance of
analyses used to deter-

at the local alignment scores
gth). The number of standard deviations to
s 1n the same length range (z score) is then determined.
score is then calculated according to the extreme value distribu-
the z scores, given in Equation 25. This method is discussed in greater
Chapter 7. Pearson (1996) showed that these two methods are equally useful in
atabase similarity searches for detecting sequences more distantly related to the input
query sequence.

Pearson (1996) has also determined the influence of scoring matrices and gap penal-
ties on alignment scores of moderately related and distantly related protein sequences in
the same family. For two examples of moderately related sequences, the choice of scor-
ing matrix and gap penalties (gap opening penalty followed by penalty for each addi-
tional gap position) did not matter, i.e., BLOSUM50 —12/—2, BLOSUM62 —8/—2,
Gonnet93 —10/—2, and PAM250 —12, —2 all produced statistically significant scores.
The scores of distantly related proteins in the same family depended more on the choice
of scoring matrix and gap penalty, and some scores were significant and others were not.
Pearson recommends using caution in evaluating alignment scores using only one par-
ticular combination of scoring matrix and gap penalties. He also suggests that using a
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larger gap penalty, e.g., —14, —2 with BLOSUMS50, can increase the selectivity of a
database seagh for similarity (fewer sequences known to be unrelated will receive a sig-
t score).
countered by FASTA in calculating statistical parameters during a
hat of distinguishing unrelated from related sequences, because only
equences must be used. As score and sequence length information
the search, the scores will include high, intermediate, and some-
ences that are related to the query sequence, as well as low scores
iate And even high scores of unrelated sequences. As an exam-
ated database sequence can occur because the database
plexity, such as a high proportion of one amino acid.
h scores must be pruned from the search if accurate
. Pearson (1998) has devised several such pruning
fluence of the scheme on the success of a database
nificant alignment scores among members of the
ever, no particular scheme proved to be better

Example: Use of the Above Principles to Estimate the Significance of a Smith-
Waterman Local Alignment Score

The alignment shown in step 1 in the next example box is a local alignment between
the phage N and P22 repressor protein sequences used previously. The alignment is
followed by a statistical analysis of the score in steps 2 and 3. To perform this analy-
sis, the second sequence (the P22 repressor sequence) was shuffled 1000 times and
realigned with the first sequence to create a set of random alignments. Two types of
shuffling are available: first, a global type of shuffling in which random sequences are
assembled based on amino acid composition and, second, a local one in which the
random sequences are assembled by random selection of an amino acid from a slid-
ing window of length # in the original sequence in order to preserve local amino acid
composition as described on page 98 (an example of a global analysis is shown in step
2). The distribution of scores in each case was fitted to the extreme value distribution
(Altschul and Gish 1996) to obtain estimates of X and K to be used in the estimation
of significance.

The program and parameters used were LALIGN (see Table 3.1 , p. 66), which
produces the highest-scoring n independent alignments and which was described
previously (p. 75), and the scoring matrix BLOSUMS50 with a gap opening penalty of
—12 and —2 for extra positions in the gap, with end gaps weighted. These programs
do not presently have windows or Web page interfaces, and must be run using com-
mand line options.

The program PRSS performs a statistical analysis based on the correct statistical
distribution of alignment scores, as shown below. PRSS version 3 (PRSS3) gives the
results as z scores.
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Example: Estimation of Statistical Significance of a Local Alignment Score

1. Optimal alignment of phage N and P22 repressor sequences using the program
LALIGN. The command line used was lalign -f -12 -g -2 lamcl.pro p22c2.pro
3> results.doc. The -f and -g flags indicate the gap opening and extension
parameters to be used, and are followed by the sequence files in FASTA format,
then a request for 3 alignments. No scoring matrix was specified and the default
BLOSUMS50 matrix was therefore used. Program output is directed to the file
results.doc, as indicated by the symbol >. The alignment shown is the highest-
scoring or optimal one using this scoring matrix and these gap penalties. The
next two alignments reported were only 9 and 15 amino acids long and each one
had a score of 35 (not shown). As discussed in the text, these alignments are
produced by repeatedly erasing the previous alignment from the dynamic pro-
gramming matrix and then rescoring the matrix to find the next best alignment.
The fact that the first alignment has a much higher score than the next two is an
indication that (1) there are no other reasonable alignments of these sequences
and (2) the first alignment score is highly significant.

LALIGN finds the best local alignments between two sequences
version 2.0u64 March 1998

Please cite:

X. Huang and W. Miller (1991) Adv. Appl. Math. 12:373-381

Comparigon of:

(A) lamcl.pro LAMCl REFORMAT of: cipro.pro check: -1 from: 1 - 237 aa
(B) p2ZcZ.pro P22C2 REFORMAT of: p22 check: 4729 from: 1 to - 216 aa
using matrix file: blosum50.mat, gap penalties: -12/-2

36.1% identity in 208 aa overlap; score: 401 [1/2 bits]

30 40 50 60 70 80
LAMC1 KKNELGLSQESVADKMGMGQSGVGALFNGINALNAYNAALLAKILKVSVEEFSPSIAREI
®22C2 RRKKLKIRQAALGKMVGVSNVAISQWERSETEPNGENLLALSKALQCSPDYLLKGDLSQT
20 30 40 50 60 70

90 100 110 ° 120 130 140
T.AMC1 YEMYEAVSMQPSLRSEYEYPVFSHVQAGMFSPELRTFTKGDAERWVSTTKKASDSAFWLE
P22C2 NVAYHS RHEP-—RGSYAAPLISWVSAGQWMEAVEPYHKRAIENWHDTTVDCSEDSFWLD
80 90 100 110 120

150 160 170 180 190 200
TAMC1 VEGNSMTAPTGSKPSFPDGMLILVDPEQAVEP——GDFCIARLGGD EFTFKKLIRDSGQV

P22C2 VQGDSMTAPAGL**SIPEGMIILVDPE*fVEPRNGKLVVAKLECENEATFKKLVMDAGRK
130 140 150 160 1790 180

210 220 230
LAMC1 FLQPLNPQYPMIPCNESCSVVGKVIASQ

222C2 FLKPLNPQYPMIEINGNCKIIGVVVDAK
190 200 210

2. Statistical analysis with program PRSS using a global shuffling strategy. The
program prompts for input information and requests the name of a file for sav-
ing output. The second sequence has been shuffled 1000 times conserving
amino acid composition, and realigned to the first sequence. The distribution of
scores is shown. Fitting the extreme value distribution to these scores provides
an estimate of A and K needed for performing the statistical estimate by Equa-
tion 31. Recent versions of PRSS estimate these parameters by the method of
maximum likelihood estimation (Mott 1992; W. Pearson, pers. comm.)
described on the book Web site.
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| ancl. pro, 237 aa vs p22c2.pro

S-w est
< 24 0 0:
26 0 0:
28 3 1:*==
30 13 6: f3
32 27 21: &
34 68 50: p
36 98 84: &
38 128 111: *
40 129 123: f
42 105 121: &
44 110 108: f
46 63 91: f
48 75 72: &
50 35 56: *
52 48 42: f
54 30 32: *
56 19 23: &
58 17 16: *=
60 6 13: ====== *
62 7 Q: ======= *
64 7 6 =====*=
66 2 5:== *
68 4 3i==*=
70 0 2: *
72 1 2: =%
74 0 1:*
76 1 1:*
78 2 1:*=
80 0 0:
82 0 0:
84 0 0:
86 1 0: =
88 1 0: =
90 0 0:
92 0 0:
94 0 0:
> 96 0 0: O

216000 residues in 1000 sequences,

BLOSUMBO nmtrix, gap penalties: -12,-2

unshuffled s-w score: 401; shuffled score range: 30 - 89
Lanmbda: 0.16931 K: 0.020441; P(401)= 3.7198e-27

For 1000 sequences, a score >=401 is expected 3.72e-24 tines
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The above method does not necessarily ensure that the choice of scoring matrix and gap

matching a sequence to a database of sequences, the scores also follow the extreme
value distri . For this situation, Mott (1992) has explained that for local alignments
the alignment should on the average be half-way along the query

The Statistical Signi i nment Scores between Sequences and the
Significance of Sco arch Are Calculated Differently

een a query sequence and a sequence database, a
ence in the database. Alignment scores between
A to calculate the parameters of the extreme
s between unrelated sequences could reach
an then be calculated (Pearson 1998).
ilarly, in the d; n BLAST, estimates of the statistical
arameters are ca on and sequence composition. The
parameters are alculate ding conserved patterns by
chance alignme ed sequence . When performing such
database searg ials are made ost strongly matching

§'Dctween unre are made, the chance that
seotes will be the highest one es. The probability of
erefore has to be higher than t or a score of one
gueng he length of the query sequence is abd uld be in a nor-
mal se e alignment, but the effective database seq® d represents
ma erent sequences, each one a different test alignmé he Pois-
sonfdistribution should apply (Karlin and Altschul 1990, 19 gl'et al. 1994), as it
did_abevent *Value distribution from many

gin a database of D sequences, no alignments with
ean of the highest possible local alignment scores s is given by
of observing at least one score sis P = 1 — ¢~ ™. For the range of values
at are of interest, i.e., P < 0.1, P = Ds. If two sequences are aligned by PRSS
as given in the above example, and the significance of the alignment is calculated, two
scores must be considered. The probability of the score may first be calculated using
the estimates of N and K. Thus, in the phage repressor alignment, P(s > 401) =
3.7. X 107?7. However, to estimate the EV parameters, 1000 shuffled sequences
were compared, and the probability that one of those sequences would score as high as
401 is given by Ds, or 1000 X 3.7 X 107*" = 3.7 X 10~ %% These numbers are also
shown in the statistical estimates computed by PRSS. Finally, if the score had arisen
from a database search of 50,000 sequences, the probability of a score of 401 among this
many sequence alignments is 5 X 107 '%, still a small number, but 50,000 larger than
that for a single comparison. These probability calculations are used for reporting the
significance of scores with database sequences by FASTA and BLAST, as described in
Chapter 7.
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SEQUENCE ALIGNMENT AND EVOLUTIONARY DISTANCE ESTIMATION BY BAYESIAN
STATISTICAL METHODS

A recent
methods
culate
metho

ent in sequence alignment methods is the use of Bayesian statistical
e alignments between pairs of sequences (Zhu et al. 1998) and to cal-
ween sequences (Agarwal and States 1996). Before discussing these
rovide some introductory comments about Bayesian probability.

Introduction to Baye

er from other types of statistics by the use of conditional
e used to derive the joint probability of two events or con-
al probability is P(BOA), meaning the probability of B,
of B, regardless of the value of A. Suppose that A can
an also have two states, B1 and B2, as shown in Table
espond to two allelic states of two genes. Then,
+ P(A2) = 1. Suppose, further, that the prob-
— 0.3 = 0.7. In our genetic example, each
o allele, for which p and g are often used.
e right margins of the table as the
as the marginal probabilities.
he middle two columns of the
e to be entered in row Bl
also denoted P[B1, A1]). The
pformation up to this point,
t probabilities. With addi-
probabilities may be
A10B1) = 0.8 and
ortion of a pop-
A2B1) = 1,
§,3. Then
ated by Bayes’ rule,

occurrence of Al with B

P(Al and B1) = P(B1) P(A10B1) (38)
P(Al and B1) = P(A1) P(B10OA1) (39)

Thus, P(Al and B1) = P(B1) X P(A10B1) = 0.3 X 0.8 = 0.24, and P(A2 and B2) = P(B2)
X P(A20B2) = 0.7 X 0.7 = 0.49. The other joint probabilities may be calculated by sub-
traction; e.g., P(A2 and B1) = P(B1) — P(Al and B1) = 0.30 — 0.24 = 0.06. To calculate

Table 3.11. Prior information for
a Bayes analysis

Al A2

B1 0.3
B2 0.7
1.0
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Table 3.12. Completed table of
joint and marginal probabilities

Al A2

B1 0.24 0.06 0.3
B2 0.21 0.49 0.7
0.45 0.55 1.0

P(Al) int pyobabilities in each column may be added, thereby complet-
ing t tablejand shown in Table 3.12.
P( y also be calculated in the following manner,

P(Al) = P(Al and B1) + P(Al and B2)
= P(B1) P(A10B1) + P(B2) P(A1CB2) (40)

alculated from Equations 38 and 39 by rear-
and the following form of Bayes’ rule may

P(B20A1) = P(Al and B2) / P(A1)
= P(B2) P(A10B2) / P(A1)
= P(B2) P(A10B2) / [P(B1) P(A10B1) + P(B2) P(A10B2)] (41)

=0.7 X0.30/[0
467 = 0.533. Such calculated p
10715, as opposed to the prior probabil

0.3] = 0.467, and also
ed posterior proba-
available. Thus,

1al beliefs concerning a parameter of
on of the parameter, the new data provide a like-
e normalized product of the prior and likelihood (Eq. 41)
1stribution.

Example: Bayesian Analysis

Another illustrative example of a Bayesian analysis is the game played by Monty Hall
in the television game show “Let’s Make a Deal.” Behind one of three doors a prize is
placed by the host. A contestant is then asked to choose a door. The host opens one
door (one that he knows the prize is not behind) and reveals that the prize is not
behind that door. The contestant is then given the choice of changing to the other
door of the three to win. The initial or prior probability for each door is 1/3, but after
the new information is provided, these probabilities must be revised. The original
door chosen still has a probability of 1/3, but the second door that the prize could be
behind now has a probability of 2/3. These new estimates are posterior probabilities
based on the new information provided.
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In the above example, note that the joint probability of A1 and B1 [P(Al and B1)] is not
equal to the poduct of P(A1) and P(B1); i.e., 0.24 is not equal to 0.3 X 0.45 = 0.135. Such
would be thgi€ase if the states of A and B were completely independent; i.e., if A and B were
endent variables as, for example, in a genetic case of two unlinked genes
ve example, the state of one variable is influencing the state of the other
t independent of each other, as might be expected for linked genes in

ication of Bayes’ rule is to consider the influence of several variables
ome. The analysis is essentially the same as that outlined
orks with three instead of two values of a variable, think
es, each having three alleles, and of deriving the corre-
. The resulting joint probabilities will depend on the
alues for each variable. To go even farther, instead of a
ative values of a variable, Bayesian statistical meth-
ber of values of variables or even with continuous

ods, a slightly different approach is taken.
ossible alignments, gap scoring systems,
pbable alignments may then be identi-
ats is quite readily adapted to such
hat a sequence alignment score
btaining the score in align-
ping the score in align-
e highest alignment score
presents the nucleotide or
e level of evolutionary
er by examining the
ible variations of

n 41, posterior information on the
em, and substitution matrix can be obtained.
ioinformatics tutorial by C. Lawrence is available at
.org/resnres/bioinfo/.

1an Statistics to Sequence Analysis

To use an example from sequence analysis, a local alignment score (s) between two
sequences varies with the choice of scoring matrix and a gap scoring system. In the
previous sections, an amino acid scoring matrix was chosen on the basis of its per-
formance in identifying related sequences. Gap penalties were then chosen for a partic-
ular scoring matrix on the basis of their performance in identifying known sequence
relationships and of their keeping a local alignment behavior by the increase in score
between unrelated sequences remaining a logarithmic function of sequence length.
The alignment score expressed in bit units was the ratio of the alignment score expect-
ed between related sequences to that expected between unrelated sequences, expressed
as a logarithm to the base 2. The scores may be converted to an odds ratio (r) using
the formula r = 2°% The probability of such a score between unrelated or random
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sequences can then be calculated using the parameters for the extreme value distri-
t combination of scoring matrix and gap penalty. Finally, the above
vide several different alignments, without providing any information
most likely. With the application of Bayesian statistics, the approach

Bayesian statistics to this problem allows one to examine the effect
such as the chosen amino acid substitution matrix, on the prob-
es are homologous. The method provides a posterior probabil-
mefts taking into account all possible scoring systems. Thus,
heir probabilities may be determined. This method cir-
a particular scoring matrix and gap scoring system
es can be tested. The approach also provides condi-
he gap number and substitution matrix. Another
uence analysis is to find the PAM DNA substitu-
um probability of a given level of mismatches
edict the evolutionary distance between the

Bayesian Ev

Agarwal and Stat
of the evolutio
sequences of t
there areno g

s to provide the best estimate
. The examples used are
atches. Consequently,
quences of this type origi-
habditis elegans genomes.
ences, it is difficult to
of Bayesian meth-
eat was formed

r matches and mismatches in the DNA PAM sco

e 3.6). Recall th i i repres
iti an evolutionary distance of 10
ultiplying the PAM1 scoring matrix by itself
evolution assumes that any sequence position can
ility, and subsequent changes at a site are not influenced by pre-
at that site. In addition, a changed position can revert to the original
e at that position. The problem is to discover which scoring matrix (PAM50, 100,
c.) gives the most likely alignment score between the sequences. This corresponding evo-
lutionary distance will then represent the time at which the sequence duplication event
could have occurred.

An approach described earlier was to evaluate the alignment scores using a series of
matrices and then to identify the matrix giving the highest similarity score. For exam-
ple, if there are 60 mismatches between sequences that are 100 nucleotides long, the
PAMS50 matrix score of the alignment in bits (log,) is 40 X 1.34 — 60 X 1.04 = —8.8,
but the PAM125 matrix score is much higher, 40 X 0.65 — 60 X 0.30 = 8. When these
log odds scores in bits are converted to odds scores, the difference is 0.002 versus 256.
Thus, the PAM125 matrix provides a much better estimate of the evolutionary distance
between sequences that have diverged to this degree. The Bayesian approach continues
this type of analysis to discover the probability of the alignment as a function of each
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evolutionary distance represented by a different PAM matrix. If x is the evolutionary
distance repg@sented by the PAMN matrix divided by 100, and k is the number of mis-
matches in @8&quence of length #, then by Bayes’ rule and related formulas discussed
above

P(x0k) = P(kx) P(x) / P(k)
= P(kx) P(x) / 2, P(kx) (42)

ce x given the sequence with k mismatches (and n — k
or the sequence with k mismatches using the log odds
, and P(x) is the prior probability of distance x (usu-
us making each one equally possible). The denom-
r the range of x, which is 0.01 — 4, representing
jon years) times the prior probability of each
calculated by Equation 42, this sum repre-
s the effect of normalizing the probabil-
e of the probability curve reveals how

ore for k < 3n/4. Because the
ward higher distances, the
ion are the best indica-
ong with 40 mismatches, the
ce of ~600 million years.
scribed of finding the
nd to the mode or
distances are

0.05—

; length = 100

o

:;1 40 mismatches
P 0.0254
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Figure 3.19. P(xk) for sequence length n = 100 and number of mismatches k = 40 or 60. (Redrawn
from Agarwal and States 1996.)
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Working with Odds Scores

Odds scores, and probabilities in general, may be either multiplied or added, depend-
ing on the type of analysis. If the purpose is to calculate the probability of one event
AND a second event, the odds scores for the events are multiplied. An example is the
calculation of the odds of an alignment of two sequences from the alignment scores
for each of the matched pairs of bases or amino acids in the alignment. The odds
scores for the pairs are multiplied. Usually, the log odds score for the first pair is
added to that for the second, etc., until the scores for every pair have been added. An
odds score of the alignment in units of logarithm to the base 2 (bits) may then be cal-
culated by the formula odds score = 2 raised to the power of the log odds score. A
second type of probability analysis is to calculate the odds score for one event OR a
second event, or of a series of events (event 1 OR event 2 OR event 3). In this case,
the odds scores are added. An example is the calculation of the odds score for a given
sequence alignment using a series of alternative PAM scoring matrices. The align-
ment scores are calculated in log odds units and then converted into odds scores as
described above. The odds scores for the sequences using matrix 1 are added to the
odds score using matrix 2, then to the score using matrix 3, and so on, thereby gen-
erating the odds score for the set of matrices. From this sum of odds scores, the prob-
ability of obtaining one of the odds scores S is S divided by the sum. There are also a
number of other uses of this same type of calculation for locating common patterns
in a set of sequences by statistical methods that are discussed in Chapter 4.

estimate depends on the
ith time (the molecu-
is the same. Such
different scor-

ifficult to determine the extent of
above Bayesian analysis allows a determination
s a function of both length of the repeated region and evo-
ength and distance that gives the highest overall probability may then
. Such alignments are initially found using an alignment algorithm and a
ular scoring matrix. Analysis of the yeast and C. elegans genomes for such repeats has
underscored the importance of using a range of DNA scoring matrices such as PAM1 to
PAMI120 if most repeats are to be found (Agarwal and States 1996). One disadvantage of
the Bayesian approach is that a specific mutational model is required, whereas other meth-
ods, such as the maximum likelihood approach described in Chapter 6, can be used to esti-
mate the best mutational model as well as the distance. Computationally, however, the
Bayesian method is much more practical.

Bayesian Sequence Alignment Algorithms

Zhu et al. (1998) have devised a computer program called the Bayes block aligner which in
effect slides two sequences along each other to find the highest scoring ungapped regions
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or blocks. Thege blocks are then joined in various combinations to produce alignments.
There is no ne€d for gap penalties because only the aligned sequence positions in blocks are
scored. Inste@d@f using a given substitution matrix and gap scoring system to find the
nment, a Bayesian statistical approach is used. Given a range of substi-
number of blocks expected in an alignment as the prior information,
osterior probability distributions of alignments. The Bayes aligner is
nsing agreement from http://www.wadsworth.org/resnres/bioinfo.

vailable. The method may be used for both protein and
ock between two sequences is defined as a run of one or
equence alignment that can include intervening mis-
e following example. Only the aligned blocks are iden-
ed sequence and gaps between these blocks are not
ment is given by the product of the probabilities of
locks, as indicated in the following example. The
ombination of blocks to find the best scoring

Example: Block Alignment of Two Sequences and of the Scoring of the Alignment as
Used in the Bayes Block Aligner (Zhu et al. 1998)

The score of the alignment is obtained by adding the log odds scores of each aligned
pair in each block. Sequence not within these blocks is not scored and there is no
penalty for gaps. Regions of both sequences that are not aligned can be present with-
in the gap. The sequence alignment score is therefore determined entirely by the
placement of block boundaries.

Block 1 Block 2
Sequence 1 S G T G K (gap) K K R L E
Sequence 2 P G S G K(gap) K Q¢ R L T
BLOSUM62
score -16 1 6 5 5 1 5 4 =1
Sum of scores = 31 half bits
= 15.5 bits

Odds of alignment score

= 215.5¢0 1

= 4.6 x 104to 1
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Unlike the commonly used methods for aligning a pair of sequences, the Bayesian
method does not depend on using a particular scoring matrix or designated gap
penalties. Hence, there is no need to choose a particular scoring system or gap penal-
ty. Instead, a number of different scoring matrices and range of block numbers up to
some reasonable maximum are examined, and the most probable alignments are
determined. The Bayesian method provides a distribution of alignments weighted
according to probability and can also provide an estimate of the evolutionary dis-
tance between the sequences that is independent of scoring matrix and gaps.

Like dynamic programming methods and the BLAST and FASTA programs, the
Bayes block aligner has been used to find similar sequences in a database search. The
most extensive comparisons of database searches have shown that the program
SSEARCH based on the Smith-Waterman algorithm, with the BLOSUMS50 -12,-2
matrix and gap penalty scoring system, can find the most members of protein fami-
lies previously identified on the basis of sequence similarity (Pearson 1995, 1996,
1998) or structural homology (Brenner et al. 1998). In a similar comprehensive anal-
ysis, Zhu et al. have shown that the Bayes block aligner has a slightly better rate than
even SSEARCH of finding structurally related sequences at a 1% false-positive level.
Hence, this method may be the best one to date for database similarity searching.

The Bayes block aligner defines blocks by an algorithm due to Sankoff (1972). This
algorithm is designed to locate blocks by finding the best alignment between two
sequences for any reasonable number of blocks. The example shown in Figure 3.20
illustrates the basic block-finding algorithm.

Following the initial finding of block alignments in protein sequences by the
Sankoff method, the Bayes block aligner calculates likelihood scores for these align-
ments for various block numbers and amino acid or DNA substitution matrices. To
be biologically more meaningful by avoiding too many blocks, the number of protein
sequence blocks k is limited from zero to 20 or the length of the shorter sequence
divided by 10, whichever is smaller. For a set of amino acid substitution matrices such
as the Dayhoff PAM or BLOSUM matrices, the only requirement is that they should
be in the log odds format in order to provide the appropriate likelihood scores by
additions of rows and columns in the V .and W matrices (Fig. 3.20). A large number of
matrices like the V and W matrices in Figure 3.20 are used, each for a different amino
acid substitution matrix and block number. In each of these matrices, a number of
alignments of the block regions that are found are possible. The score in the lower
right-hand corner of each matrix is the sum of the odds scores of all possible align-
ments in that particular matrix. The odds scores thus calculated in each matrix are
summed to produce a grand total of odds scores. The fraction of this total that is
shared by a set of alignments under given conditions (e.g., a given number of blocks
or an amino acid substitution matrix) provides the information needed to calculate
the most probable scoring matrix, block number, etc., by Bayesian formulas. The joint
probabilities equivalent to the interior row and column entries in Tables 3.11 and 3.12
are then calculated. In this case, each joint probability is the likelihood of the align-
ment given a particular block alignment, number of blocks, and substitution matrix,
multiplied by the prior probabilities. These prior probabilities of particular alignment,
block number, and scoring matrix are treated as having an equally likely prior proba-
bility. Once all joint probabilities have been computed for every combination of the
alignment variables, the conditional posterior information can be obtained by Bayes’
rule, using equations similar to Equation 41. As in Equation 41, the procedure involves
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dividing the sum of all alignment likelihoods that apply to a particular value of a partic-
ular variable by the sum of all alignment likelihoods found for all variables.

Use of the Bayes Block Aligner for Pair-wise Sequence Alignment

There are several possible uses of the Bayes block aligner for sequence alignment. The
overall probability that a given pair of residues should be aligned may be found by sev-
eral methods. In the first, alignments may be sampled in proportion to their joint pos-
terior probability, as for example, alignments produced by a particular combination of
substitution matrix and gap number. A particular substitution matrix and gap number
may be chosen based on their posterior probabilities. An alignment may then be
obtained from the alignment matrix in much the same manner as the trace-back proce-
dure used to find an alignment by dynamic programming. Once a number of sample
alignments has been obtained, these samples may be used to estimate the marginal dis-
tribution of all alignments. This distribution then gives the probability that each pair of
residues will align. An alternative method of sampling the joint posterior probability
distribution is to identify an average alignment for k blocks by sampling the highest
peaks in the marginal posterior alignment distribution and by using each successively
lower peak as the basis for another alignment block down to a total of k blocks, con-
catenating any overlaps. These alignments may then be used to obtain the probability of
each aligned residue. In the second method, the exact marginal posterior alignment dis-
tribution of a specific pair of residues may be obtained by summing over all substitution
matrices and possible blocks.

Third, optimal alignment and near-optimal alignments for a given number of blocks
can also be obtained. Finally, the Bayes block aligner provides an indication as to
whether or not the sequence similarity found is significant. Bayesian statistics examines
the posterior probabilities of all alternative models over all possible priors. The Bayesian
evidence that two sequences are related is given by the probability that K, the maximum
allowed number of blocks, is greater than 0, as calculated in the following example taken
from Zhu et al. (1998). The posterior probability of the number of blocks, the substitu-
tion matrices, and the aligned residues can all be calculated as described above.

Example: Bayes Block Aligner (Zhu et al. 1998)

The proteins guanylate kinase from yeast (PDB id. 1GKY) and adenylate kinase from
beef heart (PDB id. 2AK3, chain A) are known to be structurally related and are from a
database of protein sequences that are 26-35% identical. These proteins were aligned
with the Bayes block aligner using as prior information an equal chance that the block
number k can be any number between 0 and 18, and that the BLOSUM30 to 100 sub-
stitution matrices can each equally well predict the aligned positions. The posterior
probability distribution of the number of blocks, k, is shown in Figure 3.21A. Values k
> 0 indicate the possibility of finding one or more blocks. In this example, the proba-
bility for values of k is approximately the same for k > 8. Below 8, the values decrease
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gradually to a low value at k = 1 and then increase again abruptly for k = 0. The total
area under the curve from k = 0 to k = 18 has been set to 1.

The cumulative posterior probability that the block number K is greater than a
given value k is shown in Figure 3.21B. The area under the curve for k = 1 has the
value 0.938. Although at first glance this number appears to represent the probabili-
ty that the sequences are related, i.e., that K > 0, the probability is actually higher by
Bayesian standards. Instead, the maximum value for P(kOsequences) in Figure 3.21A,
i.e., 0.0731 at k = 8, is used. This number times the maximum number of blocks
0.0731 X 18 = 1.316, represents the accumulated best evidence that the blocks are
related or that K > 0. This calculation assumes that all block numbers are equally
likely or that p(kCk>0) = 1/K = 1/18. The value P(k = 0Osequences) = 0.0621 is the
corresponding best evidence that the sequences are not related or that K = 0. The
probability that the sequences are related is then calculated as 1.316 / (1.316 +
0.0621) = 0.955. This value is the supremum of P(k > 0) taken over all prior distri-
butions on k, where the supremum is a mathematical term that refers to the least
upper bound of a set of numbers. This high a Bayesian probability is strong evidence
for the hypothesis that the sequences are homologous. Normally, a Bayesian proba-
bility of p > 0.5 will suffice (Zhu et al. 1998).

The posterior probability distribution for the BLOSUM scoring matrices for align-
ment of these same two proteins is shown in Table 3.13. Note that the highest prob-
abilities are for BLOSUM tables between BLOSUMS50 and BLOSUM 80, and that the
highest probability is at BLOSUMS62, which is commonly used for protein sequence
alignment and database searches. Thus, BLOSUM62 seems best to represent the
amino acid substitutions observed in all of the computed alignments between these
two proteins. In another alignment of 1GKY and 2AK3-A using the Dayhoff PAM
matrices instead of the BLOSUM matrices, the posterior probability distribution of
the matrices shown in Figure 3.22 was found. Note that peaks are found at PAM110,

er of identical residues in two
sequences shown is taken from Sankoff
W are made according to the matrix scoring scheme
gorithm first examines the maximum number of bases that can
e used in this example is that a match between two bases is scored as 1 and
. This number, 4, is shown in the lower right-hand corner of the matrix. To obtain
er, the method does not consider the number of gapped regions between each group of
matched pairs, defined as an unconstrained set of matches by Sankoff. For example, a; can pair with
b;, and a, with by, to comprise a group of two sequential pairs, shown in bold. Then there is an
unmatched region followed by a match of a, with bs, unmatched base as, and finally a match
between ag and b;. Thus, two unmatched (gapped) regions will be included in this alignment. A sec-
ond such set of matches that gives a maximum number of matches is shown as italicized positions.
In this case, there is one unmatched region between the groups of matches. In B-D, a slightly dif-
ferent computational method is used to find the maximum possible number of matches given that
there are zero gapped regions, one gapped region, two gapped regions, etc. In B, a matrix V;, where
subscript 0 indicates the number of gapped regions permitted, is first calculated. The bold and ital-
icized positions indicate the scores found for the two groups of matches. To simplify the calculation
of higher-level V matrices (V}, V5, etc.), another set of matrices (W;, W, etc.) is also calculated. In
C, the calculation of Wy is shown. Using the scores calculated in W,, matrix position and the algo-
rithm shown in D, V] is then produced. V; shows the same combinations of matches found in the
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A. W matrix B. V matrix
j b C C A G T C T j b C C A G T C T
i 0 1 2 3 4 5 6 7 i 0 1 2 3 4 5 6 7
a0l0oO|jO0O|JO|jO]jO]|]O|O]O a0l|0O|0O0|O]|O|O|]O]|]O]O
A1lOo|O0O]|O|1|1]|1]|1]A1 A1l0|0|O0O|1]0]|0]|0]|O
G2|l|0|0|O0|0|2|2]|2]|2 G2|l|0|0|0|0O|2]0|0]O0
c3|o|717|1|1]|]2|2]|]3]|3 c3|0|7|1|]0|0|2|1]0
c4|0|0|2|2|2|2|3]|3 c4)]0|1]2|1|]0|1]|3]|3
A5(0|1|2|3[3|83|3]|3 A5(0|1|1|3|1|]0|0]|3
T6|0| 0| 1]|2|3|4|4]| 4 T6]0|0|0|1|3|2|0]1
WAi.j) Voli) =
Wi - 1), Voli = 1,j=1) + s(a;, b)
=max < W(,j-1),
WGi-1,j-1) +s(a; b)
where s(a;, b)) is score of match of &; with b;.
C. Wy matrix D. V; matrix
i b C C A G T C T j b C C A G T C T
i 0O 1 2 3 4 5 6 7 i 0O 1 2 3 4 5 6 7
a0l0|0|O0O|O|O]O]|]O]|O a0l|0O|O0O|O]|]O|O]O]|]O]O
A1lo|O]|O|1|1]|1]|1]A1 A1|l]0|JO0O|O0O|1]0|]0|O0]O
G2|l|0j0|O0|1]|2]|2|2]|2 G2l0|O0|O0O|O|2|1]1]1
c3jo|1|1|1|2|2]2]|2 c3|0|7|1|0|1|2]|3]|2
c4l0|1|2|2|2]|]2|3]|3 c4)]0|1]2|1]|1]2]|3]|3
A5(0|1|2|3|3|3|3]|3 A5|0|0|1|3|2|2|2]|3
Te|O0|1|2|3|3|]3|3]|3 T6]0|0|1|2|3|4|3]| 4
Wo(i.)) )]
Woli -1, j), Vii-1,j-1),
= max
=max < Volif). Wo@i-1,j-1)
Wofisj = 1) +s(a b)
where Vi, j) is from the V; matrix in part B. where W(i, j) are obtained from the W,

matrix in part C.

unconstrained case in A, and, therefore, no further calculation of matrices is necessary. In other cases,
q V and W matrices will be calculated so that alignments with an increased number of unmatched or
gapped regions may be found according to the formulas:

Wq (l - 1)j)>
W,(, j) = max |V, (j),
Wq (L] - 1)

Vo(i—1,j—1),
V, (5 j) = max W, 1(i—1,;—-1)
+ s(a;, b))

The number of computational steps required is equal to the product of the sequence lengths times the
number of cycles needed to reach the unconstrained alignment, as shown in the lower right-hand cor-
ner of the matrix (A). The method may also be used for aligning protein sequences (Zhu et al. 1998)
that are distantly related, as described below.
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Table 3.13. Posterior probability distribu-
tion of BLOSUM scoring matrices for align-
ent of 1GKY and 2AK3-A

Posterior probability

0.0257
0.0449
0.0825
0.1115
0.1755
0.2867
0.2350
0.0382
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Figure 3.21. Posterior probability distribution of number of blocks from alignment of 1GKY and 2AK3-chain A by the Bayes
block aligner (analysis of Zhu et al. 1998). (A) Posterior probability distribution of the block number, k. (B) Cumulative posteri-
or probability distribution. This distribution shows the probability of a block number K greater than or equal to the value k. Val-
ues are derived from the probability distribution of k given in A. For example, P(k=1) = P(k=0) — P(k=0) = 1 — 0.062 = 0.938.
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Figure 3.22. Posterior probability distribution of Dayhoff PAM scoring matrices for alignment of
1GKY and 2AK3-A.

140, and 200, thereby suggesting that substitution matrices for different evolutionary
distances reflect the observed substitutions in different block alignments. The lower
PAM matrix may be recognizing a more conserved domain, for example. This inter-
esting observation implies that the alignment blocks found may be separated by dif-
ferent evolutionary distances, or at least may have undergone increased mutational
variation. Thus, this type of analysis can provide information as to the evolutionary
history of genes, including the possible involvement of duplications, rearrangements,

and genetic events producing chimeras.

the Bayes block aligner is to exam-
procedure is entirely different from other meth-
as dynamic programming. On the one hand, with dynam-
odology, a single best alignment is found for a given scoring matrix
ty, and the odds for finding as good a score between random sequences of
me length and complexity is determined. On the other hand, with Bayesian align-
ment methods, all possible alignments are considered for a reasonable number of blocks
and a set of substitution matrices. Rather than a probability of a single alignment, the prob-
abilities of many alignments are provided. Many possible alignments may be examined and
compared, and the frequency of certain residues in the sequences in these alignments may
be determined.

For 1GKY and 2AK3-A, no highly probable single optimal or near-optimal alignment is
found, suggesting these alignments are not representative of the best possible alignment of
these sequences. Experience with the method has suggested that a minimum number of
blocks that best represents the expected domain structure is the best approach. An average
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A. Bayes block aligner

USRPIVISGPSGTGKSTLLKKLFAEYPDSFG 31

5 RLLRAAIMGAPGSGKGTVSSRITKHFELKHL 35
* * * * * *

SS5555SS5S5S555S555S5S55555SSSSS

—_

54 VSVDEFKSMIKNNEF | EWAQF 74
73 LVLHELKNLTQYNWLLDGFPR 93

*  * *

126 VEDLKKRLE 134
117 FEVIKQRLT 125
* * *
+12 sssssssss +2

135 GRGTETEESINKRLSAAQAELAYAE 159

159 QREDDRPETVVKRLKAYEAQTEPVL 178
* * * % % * *

SSS555555555555555588888  +3

B. SSEARCH

123 PPS---VEDLKKR-LEGRGTETEESINKRLSAAQAE 154
143 PPKTMG IDDLTGEPLVQREDDRPETVVKRLKAYEAQ 178

* % * * * * * * % *

Figure 3.23. The alignment of 1GKY and 2AK3-A obtained with the Bayes aligner (A) and by
SSEARCH (B), a dynamic programming method that provides local alignments (from Zhu et al.
1998). The highest-scoring sequence positions in the marginal posterior alignment distribution for
the sequences for a block number of probability greater than 0.9 and the BLOSUM substitution
matrices were successively sampled, and are shown in A. Neighboring aligned positions with scores
greater than 0.25 of the peak value were included. Dots above the sequences indicate the relative
probability of the aligned sequence positions. Asterisks are placed to highlight sequence identities.
There is a clear correlation between the number of identities and the posterior probabilities. Align-
ment positions marked with an s’ were also identified by structural alignment using the program
VAST (see Chapter 9). In regions III and IV, longer aligned regions were found by VAST than by the
Bayes aligner. Three other regions identified by VAST of lengths 7, 7, and 8, two of which include
1-2 identities, were not reported by the Bayes aligner. In B, a local alignment of the sequences with
SSEARCH is shown. The alignment parameters (BLOSUMS50 substitution table and scoring penal-
ties of —12,—2) are optimized for superfamily and family alignments. The center and right end of
the alignment shown are approximately the same as that of alignment IV, but gaps are incorrectly
predicted in the left end.
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alignment fqQr a number of blocks of probability greater than 0.9 has been found to give
nt with predicted structural alignments. Values of k are obtained from the
ribution for k such as in Figure 3.21. Using this approach with the Bayes
ments between 1GKY and 2AK3-A shown in Figure 3.23 have been pre-
most of the predicted alignments correspond to expected structural
e active site of the enzyme, alignment II does not so correspond (Fig.
ative predictions of structural alignments are the commonest error of
bably because of relaxed conditions for scoring alignments in the

Figure 3.24. The positions of the alignments predicted by the Bayes block aligner. Predicted alignment I is shown in red, II
in cyan, III in orange, and IV in green. (A) 1GKY, (B) 2AK3-A, and (C) 2AKY, which is similar to 2AK3-A. 2AKY is cocrys-
tallized with an ATP analog. I, III, and IV may be structurally superimposed, but not II. (Reprinted, with permission, from
Zhu et al. 1998 [copyright Oxford University Press].)
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use of unconstrained prior information (Zhu et al. 1998). For these proteins, which share
identity, the Bayes aligner correctly predicts many, but not all, features of
ignment, and does so better than a dynamic programming method that
ignments. In other cases, the Bayes aligner may not perform as well as
ing. The prudent choice is to use the Bayes aligner as one of several
ligning sequences.
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INTRODUCTION

IMPORTANT CONTRIBUTIONS of molecular biology to evolutionary anal-
hat the DNA sequences of different organisms are often related. Sim-
d across widely divergent species, often performing a similar or even
t other times, mutating or rearranging to perform an altered func-
natural selection. Thus, many genes are represented in highly
s./Bhrough simultaneous alignment of the sequences of these
e been subject to alteration may be analyzed.
ing about the structure and function of molecules by
is so great, computational methods have received a
ences are aligned optimally by bringing the greatest
ter in the same column of the alignment, just as
of two sequences. Computationally, msa presents
pptimal alignment of more than two sequences
and that takes into account the degree of
ge poses a very difficult challenge. The
ienment of pairs of sequences can be
T guences, only a small number of
analyZ ate methods are used, includ-
ing (1) a progres gnment o ith an alignment of the
most alike seque building an & e sequences, (2) iter-
ative method [0 initial alignment guences and then revise the
esult, (3 ased on locally conserved
order in the sequences, tatistical methods and
of the sequences. A second co ace is identifying a
AD1¢ 0d of obtaining a cumulative score fo he column of
an msa. , the placement and scoring of gaps in the msa pre-
sents afii@dditional challenge.
T sa of a set of sequences may also be viewed as an of the
sequenc 1Rely to be recently derived
oup of poorly aligned sequences share
ary relationship. The task of aligning a set of
and others less closely related, is identical to that of discov-
relationships among the sequences.
1gning a pair of sequences, the difficulty in aligning a group of sequences varies
erably with sequence similarity. On the one hand, if the amount of sequence varia-
tion is minimal, it is quite straightforward to align the sequences, even without the assis-
tance of a computer program. On the other hand, if the amount of sequence variation is
great, it may be very difficult to find an optimal alignment of the sequences because so
many combinations of substitutions, insertions, and deletions, each predicting a different
alignment, are possible.

The availability of a subset of the many multiple sequence alignment programs is shown
in Table 4.1. A flowchart illustrating the considerations to be made in choosing an align-
ment method is shown on page 144.

When dealing with a sequence of unknown function, the presence of similar domains in
several similar sequences implies a similar biochemical function or structural fold that may
become the basis of further experimental investigation. A group of similar sequences may

ilar genes
identical

relatively short seq
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Table 4.1.  Web sites and program sources for multiple sequence alignment

Name Source Reference
Global alignments including prog
CLUSTALW or CLUSTALX (latte FTP to ftp.ebi.ac.uk/pub/software** Thompson et al. (1994a, 1997); Higgins
graphical interface) et al. (1996)
MSA p://www.psc.edu/® Lipman et al. (1989);
://www.ibc.wustl.edu/ibc/msa.html® Gupta et al. (1995)
p fastlink.nih.gov/pub/msa
PRALINE aathPip.nimr.mrc.ac.uk/~jhering/  Heringa (1999)

ali

Iterative and other meth
DIALIGN segment align
MultAlin

ttp:// biodv/dialign.html Morgenstern et al. (1996)
http://p use.inra.fr/multalin. Corpet (1988)
htm
PRRP progressive glob ftp.ger enome/saitama- Gotoh (1996)
(randomly or doub cc
SAGA genetic algorj http Notredame and Higgins (1996)

d

Local alignme, oteins
Aligned Seg tical Evaluation ‘nih.g Neuwald and Green (1994)
Tool (As

BLOCKS e 8.fherc.org/ble off and Henikoff (1991, 1992)
eMOTIF jeb server “Stanford EDU/e ning et al. (1998)
GIBBS, glte Gibbs sampler statistical cbi.nlm.nih.gov/pub swrence et al. (1993); Liu et al. (1995);

methad wald et al. (1995)
sPwustl.edu/ 998)

0 ncbi.nlm.nih.gov/pub/maca

H
M/ (1991)

http://meme.sdsc.edu/meme/website/ 995);

od 997); Bailey

ofile analysis at UCSD**

http://www.sdsc.edu/projects/profile/ 96
SAM hidden Markov mogel Web site o1

AP K108 al. (1994); Hughey and Krogh
(1996)

* Lists of additiona www.ebi.ac.uk/biocat/, http://www.hgmp.mrc.ac.uk/Regis-
tered/Menu/prot-m 0 s/Biocomp.html, http://biocenter.helsinki.fi/bi/rnd/biocomp/.
Reviews on the per n McClure et al. (1994; progressive alignment methods), Gotoh (1996) and
Thompson et al. given in Briffeuil et al. (1998) and a review on iterative algorithms is given in Hiro-
sawa et al. (1995 ¢ performance of msa programs is commonly assessed by comparing the computed msa with
a structural alig oteins and by other objective methods (Notredame et al. 1998). Many of these programs are computa-
tionally comy be set up on a local site.

> The Bj Supercomputing facility at the University of Pittsburgh Supercomputing Facility provides accounts (see
http:// "Psc.edu/biomed/seqanal/grants.html) that provide access to several different versions of MSA and profile analysis. MSA 50
150 will align no more than 50 sequences each less than 150 residues long, MSA 25 500 will align no more than 25 sequences each less
than 200 residues long, and MSA10 1000 will align no more than 10 sequences each less than 1000 long.

¢ The MSA server at the University of Washington will take up to 8 sequences, each less than 500 long.

4 CLUSTALW is also available as freeware that runs on PCs and Macintosh computers from the same FTP site.

¢ Profile generating programs are available by FTP from ftp.sdsc.edu/pub/sdsc/biology and are included in the Genetics Computer
Group suite of programs (http://www.gcg.com/), although the most recent features of Gribskov and Veretnik (1996) are not included.

define a protein family that may share a common biochemical function or evolutionary
origin. Similar proteins have been organized into databases of protein families that are
described in Chapter 9.
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GENOME SEQUENCING

of multiple sequence alignment algorithms is in genome sequencing pro-
Chapter 2. Instead of cloning and arranging a very large number of frag-
A molecule, and then moving along the molecule and sequencing the
fragme andom fragments of the large molecule are sequenced, and those that
overlap a msa program. This approach enables automated assembly of large
sequer pomes,have been quite readily sequenced by this method, and it has
also ablefportions of the Drosophila and human genomes at Celera
Ge 997 and see Chapter 10).
for a ogram for genome projects differ in several respects from
sequen is. First, the sequences are fragments of the same large
le, and es of overlapping fragments should be the same except
opying a ors, which may introduce the equivalent of substitu-
sertions/de, e compared fragments. Thus, there should be one
ignment tha of the genome sequence instead of a range of
tlities. Second, om one DNA strand or the other and hence
omplements o ompared. Third, sequence fragments will
sually overlap, b b, in some cases, one sequence may be
included within a a pairs of sequence fragments must
be assembled in posite g ing into account any redundant
or inconsisten Interested onsult a description of the
type of meth s 1995 and seé parison of the methods,
including-sei ialspackaces tha anaging the sequence data
Viller and The Institutue of Genome
ot.0rg/) has also developed able software and meth-

assembly and analysis.

One appli
jects disc
ments of|

A

OF MULTIPLE

QUENCE ALIGNMENTS

or protein sequences can reveal whether or
nship between the sequences, so can the alignment of
reveal relationships among multiple sequences. Multiple sequence
et of sequences can provide information as to the most alike regions in the
roteins, such regions may represent conserved functional or structural domains.
If the structure of one or more members of the alignment is known, it may be possible
to predict which amino acids occupy the same spatial relationship in other proteins in the
alignment. In nucleic acids, such alignments also reveal structural and functional relation-
ships. For example, aligned promoters of a set of similarly regulated genes may reveal con-
sensus binding sites for regulatory proteins. Methods for finding such sites in nucleic acid
sequences are discussed in Chapter 8.

Another use for consensus information retrieved from a multiple sequence alignment is
for the prediction of specific probes for other members of the same group or family of sim-
ilar sequences in the same or other organisms. There are both computer and molecular
biology applications. Once a consensus pattern has been found, database searching pro-
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grams (Chapter 7) may be used to find other sequences with a similar pattern. In the lab-
oratory, a regdonable consensus of such patterns may be used to design polymerase chain
reaction (P rimers for amplification of related sequences.

RELATIONSHIP OF MU UENCE ALIGNMENT TO PHYLOGENETIC ANALYSIS

, the number or types of changes in the aligned sequence
ogenetic analysis. The alignment provides a prediction as
rrespond. Each column in the alignment predicts the
e during the evolution of the sequence family, as illus-
mn are original characters that were present early, as
peared later in evolutionary time. In some cases, the
at mutational changes are not observed. It is these
ucing an alignment. In other cases, the position
rved. Deletions and insertions may also be
starting with the alignment, one can hope
during evolution.

segA N o F L S
seqB N o F - S
seqC N K Y L S
seqD N e Y L S
NYLS NKYLS N FS NFLS
+K -
YtoF

Figure 4.1. The close relationship between msa and evolutionary tree construction. Shown is a short
section of one msa of four protein sequences including conserved and substituted positions, an
insertion (of K) and a deletion (of L). Below is a hypothetical evolutionary tree that could have gen-
erated these sequence changes. Each outer “branch” in the tree represents one of the sequences. The
outer branches are also referred to as “leaves.” The deepest, oldest branch is that of sequence D, fol-
lowed by A, then by B and C. The optimal alignment of several sequences can thereby be thought of
as minimizing the number of mutational steps in an evolutionary tree for which the sequences are
the outer branches or leaves. The mathematical solution to this problem was first outlined by
Sankoff (1975). Fast multiple sequence alignment programs that are tree-based have since been
developed (Ravi and Kececioglu 1998). However, such an approach depends on knowing the evolu-
tionary tree to perform an alignment, and often this is not the case. Usually, pair-wise alignments
are generated first and then used to predict the tree. In this example, the alignment could be
explained by several different trees, including the one shown, following one of several types of anal-
yses described in Chapter 6. The sequences then become the outer leaves of the tree, and the inner
branches are constructed by this analysis.
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CHAPTER 4
METHODS
Choose Are the Yes Perform Isa
three or > sequenpes > global > co_nvnncmg
more protein alignment of alignment
sequences.? sequences? sequences.2 produced?4 Yes
No
7 A A A
Are the Yes Translate Are there a
seqlse'\rl‘lAces »-| into protein large
c . sequences. number of [ |
sequences? sequences?s
No
Y No
No Y
Are thg sequences Yes Predict Mok
genomic sequences o gene akea
that encode related | structure profile
proteins? ' or PSSM
representation
No of the
\ 4 alignment.
Analyze for || No Do the Analyze promoter
patterns, | sequences regions, intron-exon Produce a
repeats, etc., encode RNA boundaries, etc., as hidden
as described molecules? described in Chapter 8. Markov
in Chapters model. || Yes
2 and 10. Yes
4 Y
Analyze for secondary Search for
structure as described blocks.6
in Chapter 5.

already be known to be similar on the basis of pair-wise align-
ences related by other criteria may also be used. Complex features of the
g repeated or low-complexity regions that interfere with alignments, can be ana-
scribed in Chapters 2 and 7. The flowchart describes the production of four classes of mul-
e sequence alignment.

a. A global alignment includes the entire range of each sequence in the alignment, and is usually pro-
duced by extensions to the dynamic programming global alignment algorithm that is used for
aligning pairs of sequences, but other methods are also used.

b. A sequence block is an alignment of common patterns in protein sequences that includes matches
and mismatches in each column found by using pattern-finding algorithms, but no gaps (inser-
tions and deletions) are present.

¢. An alignment of common patterns in protein sequences that includes matches, mismatches, inser-
tions, and deletions may be used to make a type of scoring matrix called a profile.

d. A hidden Markov model is a probabilistic model of a global alignment of protein sequences or of
a conserved local region (similar to a sequence profile) in those sequences that includes matches,
mismatches, insertions, and deletions. The model is “trained” to represent the set of sequences.
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Methods for finding common patterns in DNA sequences are discussed in Chapter 8.

2. Examples gfiglobal alignment, as well as other programs from which to choose, are given in the glob-
al alignmentSiand iterative and other methods sections of Table 4.1.

3. ¢cDNA sg es of the same gene from a group of organisms may be multiply aligned by a global
method onymous (i.e., change the amino acid) and nonsynonymous (i.e., do not change
thea quences may be analyzed, as described in Chapter 6 (see also note 2).

4. Aco
the s,

ent should include a series of columns in which a majority of the sequences have
an amino acid that is a conservative substitution for that amino acid, with rel-
ativ, other substitutions or gaps in these columns. These columns of alike amino
acj ougllout the alignment, often clustered into domains. There may also be
V; aligiogent that represent sequences that diverged more during the evolution of

I

§ on whef
ire alignry

equences t
es may be
0 approxima
g the sequen
ces may accomy
osition-specific sg

ot there are enough sequences on which to build a hidden Markov
well-defined region in the alignment (a profile hidden Markov
but show considerable variations in many columns, as many as
e a hidden Markov model of the alignment. This number is
ess variation among the sequences. A scoring matrix rep-
column of the alignment may also be made. These
t (a profile or HMM profile) or may not include gaps

For finding pattery earching algorithms and statistical methods
are used. The fory o aracters that are present in the sequences.
The latter perfo, analy! ” in the sequences to find the most
alike amino aci expectatid ibbs sampling algorithms. These
methods are g text.

AENT AS AN EXTENSION G
PROGRAMMING

amic programming algorithm described in Chap
t of two sequence ipman et al. 1cation of the glob-
i an optimal alignment of a small
a et al. (1995) have shown, however, that MSA
al alignment. The number of sequences that can be
se the number of computational steps and the amount of memory
exponentially with the number of sequences to be analyzed. This limitation
at the program has somewhat limited application to a small number of sequences.
Recall that the dynamic programming method of sequence alignment between two
sequences builds a scoring matrix where each position provides the best alignment up to
that point in the sequence comparison. The number of comparisons that must be made to
fill this matrix without using any short cuts and excluding gaps is the product of the length
of the two sequences. Imagine extending this analysis to three or more sequences. For three
sequences, instead of the two-dimensional matrix for two sequences, think of the lattice of
a cube that is to be filled with calculated dynamic programming scores. Scoring positions
on three surfaces of the cube will represent the alignment values between a pair of the
sequences, ignoring the third sequence, as illustrated in Figure 4.2. In MSA, positions
inside the lattice of the cube are given values based on the sum of the initial scores of the
three pairs of sequences.
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For three protein sequences each 300 amino acids in length and excluding gaps, the
number of c@nparisons to be made by dynamic programming is equal to 300° = 2.7 X
107, whereagi@mly 300> = 9 X 10* is required for two sequences of this length. This num-
ber is suffig small that alignment of three sequences by this method is practical. For
alignmen than three sequences, one has to imagine filling an N-dimensional space
or hyperg aumber of steps and memory required for a 300-amino-acid sequence
(300N, umber of sequences) then becomes too large for most practical pur-
poses, 3 to find a way to reduce the number of comparisons that must be
made singfthe attempt to find an optimal alignment. Fortunately, Car-
rillo ) founid8uch a method, called the sum of pairs, or SP method. Since
the e MS yram, Gupta et al. (1995) have substantially reduced the

ents and er of steps required. The enhanced version of MSA is
ymous astlink.nih.gov/pub/msa.
fea is that quence alignment imposes an alignment on each of
Sequences. in Figure 4.2 represents the path followed in the
d a msa for t the msa can be projected on to the sides of the
s defining a of sequences. The alignments found for each
bt sequences likg  location of the msa within the cube, and
s defines the nu pe that have to be evaluated. Pair-wise
alignments are firg guences. Next, a trial msa is pro-
duced by first prg pces (Saitou and Nei 1987; see
Chapter 6 for th gn), and the sequences are

ogene
o0ining metk

sequence B

sequence A

Figure 4.2. Alignment of three sequences by dynamic programming. Arrows on the surfaces of the
cube indicate the direction for filling in the scoring matrix for pairs of sequences, A with B, etc., per-
formed as previously described. The alignment of all three sequences requires filling in the lattice of
the cube space with optimal alignment scores following the same algorithm. The best score at each
interior position requires a consideration of all possible moves within the cube up to that point in
the alignment. The trace-back matrix will align positions in all three sequences including gaps.
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then multiply aligned in the order of their relationship on the tree. This method is used by
other programs described below (e.g., PILEUP, CLUSTALW) and provides a heuristic
alignment t not guaranteed to be optimal. However, the alignment serves to provide
alimitto th within the cube within which optimal alignments are likely to be found.
In Figure een area on the left surface of the cube is bounded by the optimal align-
ment of and C and a projection of the heuristic alignment for all three
and blue areas are similarly defined for other sequence pairs. The
the cube is bounded by projections from each of the three surface

ing pair-wise alignments in the msa. This measure is
pairs), and the optimal alignment is based on obtain-
or may not be weighted so as to reduce the influ-
in the msa. The Dayhoff PAM250 matrix and an
aligning protein sequences. MSA uses a con-
according to the scheme illustrated in Fig-
A calculates a value € for each pair of
a role the alignment of those two
is the difference between the score
optimal pair-wise alignment.
ir-wise alignment and the

of the alignment
The bigger the v.
smaller the con

Figure 4.3. Bounds within which an optimal alignment will be found by MSA for three sequences.
For MSA to find an optimal alignment among three sequences by the DP algorithm, it is only nec-
cessary to calculate optimal alignment scores within the gray volume. This volume is bounded on
the one side by the optimal alignments found for each pair of sequences, and on the other by a
heuristic multiple alignment of the sequences. The colored areas on each cube surface are two-
dimensional projections of the gray volume.




148 CHAPTER 4

Natural gap cost  Quasi-natural gap cost

sequence 1 X — — = X
sequence 2 X X — X X 3 4
sequence 3 X X X X X

Figure 4.4. Method of scoring gap penalties by the msa program MSA. x indicates aligned residues,
which may be a match or a mismatch, and — indicates a gap. In this example, each gap cost is 1,
regardless of length. The “natural” gap cost is the sum of the number of gaps in all pair-wise com-
binations (sequences 1 and 2, 1 and 3, and 2 and 3). Note that the alignment of a gap of three in
sequence 1 with a gap of length one in sequence 2 scores as gap of 1 because the gap in sequence 1
is longer. The quasi-natural gap cost is the natural cost for the gap plus an additional value for any
gap that begins and ends within another. In this example, there is an additional penalty score for the
presence of a single gap in sequence 2 that falls within a larger gap in sequence 1. The inclusion of
this extra cost for a gap has little effect on the alignments produced but provides an enormous reduc-
tion in the amount of information that must be maintained in the DP scoring matrix (Altschul
1989), thus making possible the simultaneous alignment of more sequences by MSA.

ect, then e for sequence pairs that do not
ude that seque er role because the contributions of
at pair have beej tschul et al. 1989). Weighting the
sequence pairs is Jet aro ulty that some pairs in most
sets of sequence Another s s and gives an indication
of the degree g among the seq #sequences will have low
and edhseguences wil d Js.

n an align e sequences by weighting
ore they are added to give hese weights are deter-
e predicted tree of the sequences e pair-wise scores
ence pairs are adjusted to reduce the i nlike sequence
pairs t cupy more distant “leaves” on the evolutio aces that are
joined®¥ more branches) based on the argument that t ide less
usefl information for computing the msa. This scheme 1 hat used by
other eight of scores from more
greater divergence in the evolutionary

® sequences is a

ANA0 N IE

additional practical considerations should be considered
eb sites given in Table 4.1): (1) MSA is a heavy user of machine
d is limited to a small number of sequences of relatively short lengths. (2) In
NIX command line mode of the program, there are options that allow users to spec-
ify gap costs, force the alignment of certain residues, specify maximum values for €, and
tune the program in other ways. (3) When the output shows that some € are greater than
the respective maximum ¢, a better alignment usually can be found by increasing the max-
imum € in question. However, increasing € also increases the computational time. (4) If
the program bogs down, try dividing the problem into several smaller ones.

Below is an example from http://www.psc.edu of using MSA to align a group of phos-
pholipase a2 proteins. Note that the program uses the FASTA sequence format. The fol-
lowing steps are used:

1. Calculate all pair-wise alignment scores (alignment costs).
2. Use the scores (costs) to predict a tree.

3. Calculate pair weights based on the tree.
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4. Produce,a heuristic msa based on the tree.

d compared to the maximum e.
Example of MSA

MSA release 2.1 (PSC revision b) started on Thu Jun 19 14:55:31 1997
Sequence file format is Fasta.

Calculating pairwise alignments.

kK k Kk ok ok kkok ok

Calculating weights.

———————————————— Tree given from ancestor ---——————————-———

On the left: Internal Node Distance to parent = 278.83
On the left: Internal Node Distance to parent = 23.63
On the left: Internal Node Distance to parent = 118.62
On the left: SEQ#01 Distance to parent = 230.50
On the right: SEQ#04 Distance to parent = 205.50
On the right: SEQ#05 Distance to parent = 238.37
On the right: SEQ#02 Distance to parent = 256.17
On the right: SEQ#03 Distance to parent = 0.00

Calculating epsilons.

Sequence ID Description
1 SEQ#01 P1;1POA Phospholipase a2 (EC 3.1.1.4) - Chinese cobra
2 SEQ#02 P1;1POD Phospholipase a2 (EC 3.1.1.4) - human
3 SEQ#03 P1;1PPA Phospholipase a2 (EC 3.1.1.4) lys 49 variant
4 SEQ#04 P1;1BPQ phospholipase A2 (EC 3.1.1.4) mutant (K56M) -
5 SEQ#05 P1;1PP2R phospholipase A2 (EC 3.1.1.4) (calcium-free)

xx*  Heuristic Multiple Alignment ***

Ak Ak kKKK ARDIFAT] KKk KRR KK KKK KKK KKK AKX KRR KA XA XX **35074 **35214 * % %
NLYQFKNMIQCTVPSR-SWWDFADYGCYCGRGGSGTPVDDLDRCCQVHDNCYNEAEKISGC~~~—- WPYFKTYSY
NLVNFHRMIK-LTTGKEAALSYGFYGCHCGVGGRGSPKDATDRCCVTHDCCYKRLEK-RGC———--- GTKFLSYKF
SVLELGKMIL-QETGKNAITSYGSYGCNCGWGHRGQPKDATDRCCFVHKCCYKKLT-~-~-DC-———- NHKTDRYSY

ALWQFNGMIKCKIPSSEPLLDFNNYGCYCGLGGSGTPVDDLDRCCQTHDNCYKQAMKLDSCKVLVDNPYTNNYSY
SLVQFETLIM-KIAGRSGLLWYSAYGCYCGWGGHGLPQDATDRCCEFVHDCCYGKAT-~-DC--- -~ NPKTVSYTY

149
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*********35214 *****************14325

ECSQGTLTCKGGNNACAAAVCDCDRLAAICFAG--APYNDNDYNINLKARC-—~—~—~—
SNSGSRITC-AKQDSCRSQLCECDKAAATCFARNKTTYNKKYQYYS~NKHCRGSTPRC
SWKNKAIIC-EEKNPCLKEMCECDKAVAICLRENLDTYNKKYKAYF~KLKCKKPDT-C
SCSNNEITCSSENNACEAFICNCDRNAAICFSK--VPYNKEHKNLD-KKNC--——~——
SEENGEIIC-GGDDPCGTQICECDKAAATICFRDNIPSYDNKYWLFP~-PKDCREEPEPC

Calculating pairwise projection costs.

khkkhkhkkkkkk

Calculating multiple alignment.
d1....2....3....4....5....6....7....8....9....0

R R AR EAEREESE SRS ERESEEREREEESEESEEEE RS EERESREEEEEEE

***  QOptimal Multiple Alignment ***

NLYQFKNMIQCTVPSR-SWWDFADYGCYCGRGGSGTPVDDLDRCCQVHDNCYNEAEKISGC -~~~ -— WPYFKTYSY
NLVNFHRMIK-LTTGKEAALSYGFYGCHCGVGGRGSPKDATDRCCVTHDCCYKRLEK-RGC—---— GTKFLSYKF
SVLELGKMIL-QETGKNATITSYGSYGCNCGWGHRGOPKDATDRCCFVHKCCYKKL---TDC--—~— NHKTDRYSY
ALWOFNGMIKCKIPSSEPLLDFNNYGCYCGLGGSGTPVDDLDRCCQTHDNCYKQAMKLDSCKVLVDNPYTNNYSY
SLVQFETLIM~-KIAGRSGLLWYSAYGCYCGWGGHGLPODATDRCCFVHDCCYGKA---TDC~ -~~~ NPKTVSYTY

ECSQGTLTCKGGNNACAAAVCDCDRLAAICFAG--APYNDNDYNINLKARC-—-——-———
SNSGSRITC-AKQDSCRSQLCECDKAAATCFARNKTTYNKKYQYYS-NKHCRGSTPRC
SWKNKAIIC-EEKNPCLKEMCECDKAVAICLRENLDTYNKKYKAYF-KLKCK-KPDTC
SCSNNEITCSSENNACEAFICNCDRNAAICFSK~-VPYNKEHKNLD-KKNC-----—-
SEENGEIIC-GGDDPCGTQICECDKAAATCFRDNIPSYDNKYWLFP-PKDCREEPEPC

End gaps not penalized.

Costfile: pam250
Alignment cost: 35132 Lower bound: 34945
Delta: 187 Max. Delta: 285

Sequences Proj. Cost Pair. Cost Epsilon Max. Epsi. Weight Weight*Cost

1 2 1864 1825 39 39 1 1864
1 3 1891 1843 48 57 1 1891
1 4 1654 1653 1 5 4 6616
1 5 1814 1787 27 28 2 3628
2 3 1735 1733 2 8 4 6940
2 4 1876 1866 10 10 1 1876
2 5 1713 1712 1 8 2 3426
3 4 1901 1889 12 21 1 1901
3 5 1648 1648 0 11 2 3296
4 5 1847 1842 5 6 2 3694

Elapsed time = 0.895

Tree

A tree is cgiven for the heuristic aliaonment (not shown) .
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SCORING MULTIPLE SEQUENCE ALIGNMENTS

ve, the SP method provides a way to score the msa by summing the scores
mbinations of amino acid pairs in a column of a msa. The method
r evolutionary change in which any of the sequences could be the ances-
illustrated in Figure 4.5. This figure also illustrates a difficulty with the
bstitution table of log odds scores such as BLOSUMSG62 is used for
Durbin et al. 1998, pp. 139-140). Shown is the effect of adding a
idfSubsitutions to a column that initially has all matching amino
n decrease rapidly as the number of mismatched residue
ber of sequences than five with all N, or with one or two
ould be greater because there will be more N-N matched
airs. However, the reverse is true with the SP method
umber of combinations of pairs in a column is

Sequence

Column A ColumnB ColumnC

i \\ R || A
2 L Noooree N
3 NN
4 L NN
5 L. Nooiiiieee G
N
I*\
P A NS
/’ I\ \\
g /I \ N
// /A \\ N
N ‘f\\\\ ,Ir j\‘ //'7
\ ~ 7’ /
\ \IL\ /)\, !
AR (N
N X v
\ VAN !
(W Re S\
WV
N N
Column A Column B Column C
No. of N-N matched pairs (each scores 6):
10 6 4
No. of N-C matched pairs (each scores -3):
0 4 6
BLOSUMG62 score :
60 24 6

Figure 4.5. The SP model for scoring a msa. This model represents one method for optimizing the
msa by maximizing the number of matched pairs (or minimizing the cost or number of mismatched
pairs) summed over all columns in the msa. Shown first are three columns of a five-sequence msa
with all matched (A), four matched and one mismatched (B), or three matched and two mismatched
(C) sequence characters. The SP method of calculating the cumulative scores for columns of a msa
is then illustrated by a graph with the five sequences as vertices and representing the ten possible
sequence pair-wise sequence comparisons. Solid lines represent a matched pair and dotted lines a
mismatched pair. Shown are the BLOSUMS62 scores for each column calculated by the SP method.
(Adapted from Altschul 1989.)
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————— _m
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Figure 4.6. Alternative methods for scoring a column in the msa (Altschul 1989b). The variations in column C of Fig. 4.5 are
shown modeled by a phylogenetic tree (A) and a simplified phylogenetic tree called a star phylogeny (B) where one of the
sequences is treated as the ancestor of all the others (instead of treating them as all equally possible ancestors as in the original
sum of pairs scoring method).

Y)/2. If all are 3
s6Xnn—1

n A, then the BLOSUMSG62 score for the col-
plumn, as in column B, then n — 1 matched
pairs will be 1, C pairs, giving a score of 9(n — 1) less.
he score for one, zero Cs is 9(n — 1)/[6n(n — 1)/2]
= 3/n. For three elatr ereas for six sequences, the rela-
tive difference i equence mn, the relative difference
increases, not i ith expectat gd is not providing a rea-
sonable resu ype of scoring ma3 o other methods for scoring a
d ard igure 4.6. The first is a tree-
phiylogenetic tree d elationships among the
dDy the MSA program, the sum he tree branches can
sing the substitutions in the column ively, a simplified
ree wi of the sequences as the ancestor of all of t poeny) can also
be u see Chapter 6). msa programs using these met plemented.
Oth@Pscoring methods include information content (s graph-based
od called t i vel BEaneh-and-cut algorithm for
ececioglu et al. 2000). Other meth-
guided by a tree are described below.

PROGRESS OF MULTIPLE SEQUENCE ALIGNMENT

‘ The MSA program described above for obtaining an optimal alignment of multiple

sequences is limited to three sequences or to a small number (six to eight) of relatively
short sequences. Progressive alignment methods use the dynamic programming method to
build a msa starting with the most related sequences and then progressively adding less-
related sequences or groups of sequences to the initial alignment (Waterman and Perlwitz
1984; Feng and Doolittle 1987, 1996; Thompson et al. 1994a; Higgins et al. 1996). Rela-
tionships among the sequences are modeled by an evolutionary tree in which the outer
branches or leaves are the sequences (Fig. 4.7). The tree is based on pair-wise comparisons
of the sequences using one of the phylogenetic methods described in Chapter 6. Progeni-
tor sequences represented by the inner branches of the tree are derived by alignment of the
outermost sequences. These inner branches will have uncertainties where positions in the
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NYLS NKYLS N FS NFLS

N K/-YLS

N K/-Y/F L/-S

Figure 4.7. Progressive sequence alignment. Sequences are represented as the outermost branches
(leaves) on an evolutionary tree. The most closely related sequences are first aligned by dynamic pro-
gramming, providing a representation of ancestor sequences in deeper branches with uncertainties
where amino acids have been substituted or positioned opposite a gap. These sequences are the same
as those shown in EVMSA. The challenge to the msa method is to utilize an appropriate combina-
tion of sequence weighting, scoring matrix, and gap penalties so that the correct series of evolution-
ary changes may be found.

in Figure 4.7. Two examples of programs
he Genetics Computer Group program

e authors have done much to
ompson et al. 1994a; Hig-
L with the W standing
ights to the sequence
(see Table 4.1).
evolutionary
between

nd for more than

itferent method than
y MSA is calculated the same way.
alignments of all of the sequences; (2) use the
ylogenetic tree (for an explanation of the neighbor-join-
ed, see Chapter 6); and (3) align the sequences sequentially, guided
genetic relationships indicated by the tree. Thus, the most closely related
nces are aligned first, and then additional sequences and groups of sequences are
added, guided by the initial alignments to produce a msa showing in each column the
sequence variations among the sequences. The initial alignments used to produce the guide
tree may be obtained by a fast k-tuple or pattern-finding approach similar to FASTA that
is useful for many sequences, or a slower, full dynamic programming method may be used.
An enhanced dynamic programming alignment algorithm (Myers and Miller 1988; see
book Web site) is used to obtain optimal alignment scores. For producing a phylogenetic
tree, genetic distances between the sequences are required. The genetic distance is the
number of mismatched positions in an alignment divided by the total number of matched
positions (positions opposite a gap are not scored).

As with MSA, sequence contributions to the msa are weighted according to their rela-
tionships on the predicted evolutionary tree. A rooted tree with known branch lengths of
which the sequences are outer branches (leaves) is examined (see Chapter 6). Weights are
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istance of each sequence from the root, as illustrated in Figure 4.8. The align-
etween two positions in the msa are then calculated using the resulting
iplication factors.

gaps in a msa has to be performed in a different manner from scoring
alignment. As more sequences are added to a profile of an existing msa,
influence the alignment of further sequences (Thompson et al. 1994b;
ALW calculates gaps in a novel way designed to place them between
en Pascarella and Argos (1992; see book Web site) aligned
relaged proteins, the gaps were preferentially found between sec-
se authors also prepared a table of the observed frequency

based on the
ment score
weights as

A. Calculation of sequence weights

02 Weighting factor
———— A 02+0.3/2=0.35

0.3
|01 B 0.1+0.3/2=0.25

05 C 05

B. Use of sequence weights
Column in alignment 1

Sequence A (weighta)  ......... | CT

Sequence B (weightb) ... ... lovereenns

Column in alignment 2
Sequence C (weightc)  ......... L........
Sequence D (weightd)  ......... Vi,

Score for matching these two column in an msa =

[axcxscore (K,L) +
axdxscore (K,V) +
b x ¢ x score (I,L) +
b xd x score (,V)]/4

Figure 4.8. Weighting scheme used by CLUSTALW (Higgins et al. 1996). (A) Sequences that arise
from a unique branch deep in the tree receive a weighting factor equal to the distance from the root.
Other sequences that arise from branches shared with other sequences receive a weighting factor that
is less than the sum of the branch lengths from the root. For example, the length of a branch com-
mon to two sequences will only contribute one-half of that length to each sequence. Once the spe-
cific weighting factors for each sequence have been calculated, they are normalized so that the largest
weight is 1. As CLUSTALW aligns sequences or groups of sequences, these fractional weights are
used as multiplication factors in the calculation of alignment scores. (B) Illustration of using
sequence weights for aligning two columns in two separate alignments. Note that this sequence
weighting scheme is the opposite to that used by MSA, because the more distant a sequence from the
others, the higher the weight given. For a comparison of additional weighting schemes, see Vingron
and Sibbald (1993).
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of gaps next to each amino acid in these regions. CLUSTALW uses the information in this
attempts to locate what may be the corresponding domains by appropriate
in the msa. Like other alignment programs, CLUSTAL uses a penalty for
a sequence alignment and an additional penalty for extending the gap by
one resi e penalties are user-defined (defaults are available). Gaps found in the
initial a emain fixed. New gaps introduced as more sequences are added also
i penalty, even when they occur within an existing gap, but the gap
ent are then modified according to the average match value in the
percgnt identity between the sequences, and the sequence lengths
esgiehanges are attempts to compensate for the scoring matrix,
ment with more identities should have fewer gaps), and dif-
ould limit placement of gaps if one sequence shorter).
d for each group of sequences to be aligned to confine
he alignment. Gap penalties are decreased where gaps
hieving this same result is to enhance the scores of
ignment as described in Taylor 1996), increased in
s, decreased within stretches of hydrophilic
eased or decreased according to the table in
arella and Argo useful when a correct alignment of some
the sequences i algorithm and the results of using the
above sequence djus illustrated in Figure 4.9.
CLUSTALW s for ad ditional sequences with weights
or an alignme g alignment @nce an alignment has been
made, a phylg ay be made by gtethod, with corrections
0L DOssible nges a OUN{e he alignment (see Chapter 6).
splayed by va described in Chapter 6.

nserved 1
(another

s (amino acidg

PILE ¥ the msa program that is a part of the Geng ppackage of
seq e analysis programs, owned since 1997 by Oxford is widely
usgd due to the popularity and availability of this package. F a2 method for msa
thatd aligied pair-wise using the Needle-
, and the scores are used to produce a tree
od using arithmetic averages (UPGMA; Sneath and
pter 6). The resulting tree is then used to guide the alignment of the
ated sequences and groups of sequences. The resulting alignment is a glob-
gitent produced by the Needleman-Wunsch algorithm. Standard scoring matrices
and gap opening/extension penalties are used. Unfortunately, there have not been any
recent enhancements of this program such as gap modifications or sequence weighting
comparable to those introduced for CLUSTALW. As with other progressive alignment msa
programs, PILEUP does not guarantee an optimal alignment.

Problems with Progressive Alignment

The major problem with progressive alignment programs such as CLUSTAL and PILEUP
is the dependence of the ultimate msa on the initial pair-wise sequence alignments. The
very first sequences to be aligned are the most closely related on the sequence tree. If these
sequences align very well, there will be few errors in the initial alignments. However, the
more distantly related these sequences, the more errors will be made, and these errors will
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Hbb_Human 1 -
Hbb_Horse 2 17 -
Hba_Human 3 59 60 y Pairwise alignment:
Hba_Horse 4 .59 59 13 - Calculate dist trix
Myg Phyca 5 77 7 7575 - alculate distance ma
GIb5_Petma 6 81 .82 73 74 .80 -
Lgb2_Luplu 7 87 86 86 .88 93 90
1 2 3 4 5 6
—E Hbb_Human
Hbb_Horse  J
Hba_Human
‘ ’ Rooted Neighbor Joining
Hba_Horse .
tree (guide tree)
Myg_Phyca
GIb5_Petma
Lgb2_Luplu
-------- VHLTPEERSAVTALWGKN - fVDEVGGEALGRLLVV)Y HNTORFFESFGDLST 7 -
-------- VOLYGEEKAAVLALWDKVN - JEEEVGGEALGRLLVVY IWTQRFFDSFGDLSN rogressive
————————— VLSPADKTNVKAAWGKWGAHAGEYGAEALERMFLSFHITKTYF PHFDLS - - alignment: .
--------- VLYAADKTNVKAAWS HAGEYGAEALERMFLGFHTTKTYF PHFDLS - - Align following
--------- VLYEGEWQLVLHVWA [VAGHGQDILIRLFKSHHETLEKFDRFKHLKT the guide tree
PIVDTGSVAPLYAAEKTKIRSAWAPWY STYETSGVDILVKFFTSTHAAQEFFPKFKGLTT
-------- GALTESQAALVKSSWEE I PKHTHRFFILVLEIAH FSFLKGTSE
* * * *
PDAVMG AHLD KLHVOPENFRL

KLHVOPENFRL
(PYNFKL
[PVNFKL

KVKAHGKKVLHSFGEGY]
QVKGHGKKVADALTNAVRHVD
QVKAHGKKVGDALTLAVIGHLD

EAEMKASEDLKKHGVTVLTALGAILKKKG IKYLEF
ADQLKKSPRDVRWHAERIINAVNDAVRASMDDT - - EKM| IPQYFKV
VB--Q ELOAHAGKVEKLVYEAAMTQLOVTGVVVT

AHEPRY.

LGNVLVCVLAHBEGKEFTPPVQARTYQRVVAGVANALAHKYH- - - -~ —
LGNVLVVVLARHFGKDF TPELQASYQKVVAGVANALAHKYH- - — - —
LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTEKYR- - -~
LSHCLLSTLAVHLPNDFTPAVHASLDKFLS SVSTVLTSKYR -~ -~ ——
ISEATIHVLHSRHPGDFGADAQGAMNKALELFRKDIARKYKELGYQG
LAAVIADTVAAQ-----—--- DAGFEKLMSMICILLRSAY-———- -~
VKEAILKTIKEVWGAKWSEELNSAWTIAYDELATVIKKEMNDAA - -~

Figure 4.9. A msa of seven globins by CLUSTALW. The protein identifiers are from the SwissProt database. The amino acid
subsitution matrix was the Dayhoff PAM250 matrix, and gap penalties were varied to emphasize conserved ungapped regions.
The approximate and known locations of seven a-helices in the structure of this group are shown in boxes. (Reprinted, with
permission, from Higgins et al. 1996 [copyright Academic Press].)

be propagated to the msa. There is no simple way to circumvent this problem. A second
problem with the progressive alignment method is the choice of suitable scoring matrices
and gap penalties that apply to the set of sequences (Higgins et al. 1996).

For the difficult task of aligning more distantly related sequences, using Bayesian meth-
ods such as hidden Markov models (HMMs) may be useful. For more closely related



MULTIPLE SEQUENCE ALIGNMENT 157

sequences, CLUSTALW is designed to provide an adequate alignment of a large number of
sequences afil provide a very good indication of the domain structure of those sequences.

ITERATIVE METHODS O TIPLE SEQUENCE ALIGNMENT

The m ith the progressive alignment method described above is that errors
ts of the most closely related sequences are propagated to the msa.
en the starting alignments are between more distantly relat-
s attempt to correct for this problem by repeatedly realign-
and then by aligning these subgroups into a global align-
objective is to improve the overall alignment score, such
of these groups may be based on the ordering of the
icted in a manner similar to that of progressive align-
equences from the rest, or a random selection of the
Hirosawa et al. (1995).

ir-wise scores during the production of a pro-
Iculate the tree, which is then used to refine
he program PRRP (Table 4.1) uses iter-
ir-wise alignment is made to predict
ignments in the same manner as
f aligned regions that include
iteratively recalculated to
sed in a new cycle of cal-
ents, as illustrated in Figure
e in the alignment score

different iterative

mg@®¥mum sum of weights is then found.
iti cribed below.

etic algorithm is a general type of machine-learning algorithm that has no direct
elationship to biology and that was invented by computer scientists. The method has been
recently adapted for msa by Notredame and Higgins (1996) in a computer program pack-
age called SAGA (Sequence Alignment by Genetic Algorithm; see Table 4.1). Zhang and
Wong (1997) have developed a similar program. The method is of considerable interest
because the algorithm can find high-scoring alignments as good as those found by other
methods. Similar genetic algorithms have been used for RNA sequence alignment
(Notredame et al. 1997) and for prediction of RNA secondary structure (Shapiro and
Navetta 1994). Although the method is relatively new and not used extensively, it likely
represents the first of a series of sequence analysis programs that produce alignments by
attempted simulation of the evolutionary changes in sequences.

The basic idea behind this method is to try to generate many different msas by rear-
rangements that simulate gap insertion and recombination events during replication in
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Figure 4.10. The iterative procedures used by PRRP to compute a multiple sequence alignment.
(Reprinted, with permission, from Gotoh 1996 [copyright Academic Press].)

nerate a higher and higher score for the msa.
e optimal or to be the highest scoring that is ac

e program is slow for

er-scoring msa by rearranging an existing align-
ch called simulated annealing (Kim et al. 1994). The pro-
e Sequence Alignment by Simulated Annealing) starts with a heuris-
en changes the alignment by following an algorithm designed to identify
es that increase the alignment score.

The success of the genetic algorithm may be attributed to the steps used to rearrange
sequences, many of which might be expected to have occurred during the evolution of the
protein family. The steps in the algorithm are as follows:

1. The sequences to be aligned (up to ~20 in number) are written in rows, as on a page,
except that they are made to overlap by a random amount of sequence, up to 50
residues long for sequences about 200 in length. The ends are then padded with gaps. A
typical population of 100 of these msas is made, although other numbers may be set.

XXXXXXXXXX ===~
=7 T XXX XXX XX XXX
T XXX XXXXXXX == -
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initial msa for the genetic algorithm (1 of ~100 in number).

1 msas are scored by the sum of pairs method, except that both natural and
ap-scoring schemes (Fig. 4.4) are used. Recall that the best SSP score for
inimum one and the one that is closest to the sum of the pair-wise
nt. Standard amino acid scoring matrices and gap opening and exten-

sed.

e now replicated to give another generation of msas. The half with
re sept to the next generation unchanged. The remaining half for
ively chosen by lot, like picking marbles from a bag, except
ar choice is inversely proportional to the msa score (the
nsa, therefore gives that one a greater chance of replicat-
e choices for the next generation are now subject to
low, to produce the children of the next generation.
n msas undergo recombination to make new child
described in step 5 below. The relative probabil-
L by program parameters. These parameters are
running to favor those processes that have

pged (else it would no longer be an
R attempt to create a better-scor-
iven msa are divided into two
andom length are insert-
@ nill-climbing” version of
best possible score following

groups based
ed into rand

AXXXXXXXX

s into phylogenetically related sequences. The
ces comprise the two related groups in this example. x

utational process is to move common blocks of sequence (overlapping
pped regions) delineated by a gap, or blocks of gaps (overlapping gaps). Some of
the possible moves are illustrated below. These moves may also be tailored to improve
the alignment score.

XXX = = XXXXX

XX = 7 XXXXXX

XXX = = XXXXX

XXXXX = = XXX

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
XX = = XXXXXX X7 7 XXXXXXX XXX = = XXXXX XX = XX XXXX
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
Starting block Whole block Split block Split block
move horizontally vertically
(guided by

phylogenetic grouping)
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5. Recombination among next-generation parent msas is accomplished by one of two
mechanigis. The first is not homology-driven. One msa is cut vertically through, and
the othefilisa is cut in a staggered manner that does not lose any sequence after the frag-
ments 3 liced. The higher scoring of the two reciprocal recombinants is kept. The
second ted below, is recombination between msas driven by conserved sequence
positi Iriven by homology expressed as a vertical column of the same residue
and j andard homologous recombination.

GX - XDx X XXGXX-XxDXxX
XORROSA X D X X XXGXXXXDXX
XX Dxx XXGXXXXDXX
) X X XXGX - XxxDxXx

Child
alignment

e of the previous one-half of the best-scoring
is now evaluated as in step 2, and the cycle of
0 times, although as many as 1000 genera-
btained.

ext generatig
ntal msas and
eps 2-5 is typi
tions can be run

plication and mutation is repeated
scoring is chosen.

7. The entire prq
several times

inations of matches, mis-

alized region of sim-

M. Analysis of
methods.

odel that considers al
§ to generate an alignment of a set
g insertions and deletions, may also ¥
sequey v an HMM is discussed on page 185 along

OTHER PROGRAN} AND METHODS FOR MULTIPLE SEQUENCEATIGNMENT

or 10 or more sequences, is to first determine
pairs of sequences in the set. On the basis of these similar-
s are used to cluster the sequences into the most related groups or into
1C tree.

the group approach, a consensus is produced for each group and then used to make
further alignments between groups. Two examples of programs using the group approach
are the program PIMA (Smith and Smith 1992), which uses several novel alignment tech-
niques, and the program MULTAL described by Taylor (1990, 1996; see Table 4.1).

The tree method uses the distance method of phylogenetic analysis to arrange the
sequences. The two closest sequences are then aligned, and the resulting consensus align-
ment is aligned with the next best sequence or cluster of sequences, and so on, until an
alignment is obtained that includes all of the sequences. The programs PILEUP and
CLUSTALW discussed above are examples. The ALIGN set of programs (Feng and Doolit-
tle 1996) and the MS-DOS program by Corpet (1988) use this method. Additional pro-
grams for msa are also described in Barton (1994), Kim et al. (1994), and Morgenstern et
al. (1996).

Another program (Vingron and Argos 1991) aligns all possible pairs of sequences to cre-
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ate a set of dpt matrices, and the matrices are then filtered sequentially to find motifs that
provide a stating point for sequence alignment. A set of programs for interactive msa by
dot matrix @nalysis and other alignment techniques has also been developed (Boguski et al.

1992).

The p TREEALIGN takes the approach that multiple sequence alignments
should fashion that simultaneously minimizes the number of changes needed
during enerate the observed sequence variation (Hein 1990). TREEALIGN
(also the program versions) has a method for performing the alignment
and t jous free construction at the same time. The initial steps are simi-

alignment methods, except for the use of a distance scale:
air-wise and the resulting distance scores are used sequen-
rearranged as more sequences are added. The sequences
e tree can be produced by maximum parsimony. Final-
pize parsimony. The advantage to this method is the
to improve the multiple sequence alignment.

LOCALIZED

he methods discussed above report a
of all sequences. A portion of the
and a type of scoring matrix
mino acid substitutions and
of the region to a new
------ Alternative ay be scanned for regions that
d these blocks may then be

alignment that j
called a profile

gATiicnts.
a third method for finding a localiz8
without first having to produce an alig
d by pattern-searching or statistical method
d sequence similarity are discussed below.

ace similarity in a set
d, the sequences
ls for finding

Profile Analysis

¢ the global msa of a group of sequences and then remov-
nserved regions in the alignment into a smaller msa. A scoring matrix
Ycalled a profile, is then made. The profile is composed of columns much like a
-msa and may include matches, mismatches, insertions, and deletions. A tutorial on
preparing profiles by the first method, prepared by M. Gribskov, is at Web address
http://www.sdsc.edu/projects/profile/profile_tutorial.html, and the Web site at
http://www.sdsc.edu/projects/profile/ will perform a motif analysis on the University of Cal-
ifornia at San Diego Supercomputer Center. The program Profilemake can be used to pro-
duce a profile from a msa (Gribskov et al. 1987, 1990; Gribskov and Veretnik 1996). A
version of the Profilesearch program, which performs a database search for matches
to a profile, is available at the University of Pittsburgh Supercomputer Center
(http://www.psc.edu/general/software/packages/profiless/profiless.html). A special grant
application may be needed to use this facility. Profile-generating programs are available by
FTP from ftp.sdsc.edu/pub/sdsc/biology and are included in the Genetics Computer Group
suite of programs (http://www.gcg.com/), although the more recent features (Gribskov and
Veretnik 1996) are not included in GCG, v. 9.1.
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uced, the profile is used to search a target sequence for possible matches to
g the scores in the table to evaluate the likelihood at each position. For
le value for a profile that is 25 amino acids long will have 25 rows of 20
in a row for matching one of the amino acids at the corresponding posi-
. If a sequence 100 amino acids in length is to be searched, each 25-
etch of sequence will be examined, 1-25, 2-26, . . . . 76-100. The first
tretch will be evaluated using the profile scores for the amino acids
he next 25-long stretch, and so on. The highest-scoring sections will

Once pro
the profile
example, t
scores, eac

sa are similar, the msa and the derived profile will be
ethods have been devised for partially circumventing
ov and Veretnik 1996), but the difficulty with the msa
ed at the beginning of this section. Sequence weight-
ple phylogenetic tree by distance methods; more
ced weight in the profile. Another problem is
lin a particular column because not enough
e of an amino acid may mean that the
otein family, adding counts to such
This feature is built into the pro-

positions general
file method disc

presentation of this profile
profile is similar to the log
PAM250 and BLOSUM62

Cons A B C D E F G H I K L M N P Q R S T V W Y Z Gap Len
I 8 3 -2 5 4 5 5 -4 24 0 1513 1 1 1 -7 2 2221 -18 -6 4 100 100
T 1319 -5 24 18 -18 19 7 -7 -4 1411 10 -1 9 29 3 -28 -14 15 100 100
L 5 5 -5 3 4 13 4 2 8 -4 1412 8 -5 -10 0 10 10 -1 5 2 22 22
s 17 14 17 13 10 -12 29 -5 -5 6 -14 -9 12 10 -2 34 19 1 -8 -15 4 100 100
T 15 3 22 ¢ -1 -512 -2 7 -3 -8-6 5 7 -8 -7 16 29 9 =22 6 -4 100 100
T 8 -1 12 -2 0 6 -4 19 -4 8 5-1 2 -8 -8 7 2219 -15 4 -3 100 100
c 17 24 -1 -3 1 8 -1 7 -10 1-2 1-3 -8-14 8 5 9 -5 14 -7 100 100
v 11 018 -1 -2 2 14 -10 26 -4 9 7-3 7 -7-7 2% 10 31 -19 -5 -5 100 100
C 1¢- -8 15 -11 -11 6 8 -711 -10 4 3 -7 0 -11 -4 11 5 15 =22 14 -11 100 100
v 7 7 -3 8 8 -311 120 -1 14 10 4 2 8 -5 0 5 26 -24 -6 8 100 100

Figure 4.11. Pattern identification by the profile method. A set of heat shock 70 (hsp70) proteins from a diverse group of
organisms were aligned by the Genetics Computer Group msa program PILEUP. A profile was then made from one region
in the alignment with the Genetics Computer Group program Profilemake. The profile represents the specific motif pattern
found for the chosen location shown for this set of hsp70 proteins. The first column gives the consensus amino acid at each
position in the profile. Thus, the consensus pattern is ITLSTTCVCV. This profile is used to search a target sequence for
matches to the profile. The table values are a log odds score of giving the probability of finding the amino acid in the target
sequence at that position in the profile divided by the probability of aligning the two amino acids by random chance. If a gap
must be placed in the target sequence to align the sequence with the profile, then the penalties for opening a gap and extend-
ing the gap, respectively, are subtracted. The profile itself may include gaps, in which case the penalty is reduced, as seen for
example in the row 3 of the profile table. The method of producing the substitution scores shown in the table is described in
the text.
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matrices used for sequence alignments. The matrix is 23 columns wide, one column for
each of the amino acids, plus one column for an unknown amino acid z and two
columns for #g@p opening and extension penalty. There is one row for each column in the
msa. The co s sequence, derived from the most common amino acid in each column
of the msa l down the left-hand column. The scores on each row reflect the num-
ber of occ each amino acid in the aligned sequences. For example, in the first
row, I, T found, with I being the majority amino acid. The highest positive
score o erlined) is in the column corresponding to the consensus amino
acid, t ore fgr an amino acid not expected at that position. These values
are de yodds @mino acid substitution matrix that was used to produce the
align log orm of the Dayhoff PAM250 matrix. Two methods are
used 1le tab average method and the evolutionary method. The evo-
lutj Seems SO, petter for finding family members.

method, natrix values are weighted by the proportion of each
each colu For example, if column 1 in the msa has 5 Ile (I),
d 2 Val (V} cy of each amino acid in this column is 0.5 I,
? 0.2 V. Thesg idered to have arisen with equal probability
y of the 20 ary the example in Figure 4.11, the I, T, and
column 1 could 0 amino acids by mutation. Suppose
at they arose from e Ile (I) column of the correspond-
ng row in the prof id scoring matrix values for I-1,
I-T, and I-V, whig off PAM250 matrix. Then
the profile value e,or 0.5 X5+ 03 X0
+02X4=3

ap in the target sequence,
iplied by a constant for
tive to the score with
e may be used in
Profilesearch)
(iles char-
ion of
1998; also see

101
of these table
onily the value of a score with 0
matters. Once a profile table has beg
atabasg es for additional sequences with the sa
orasa g matrix for aligning sequences (program Pr@
acteri of a protein family can be identified, the chance
addiftonal family members_is_oreatly increased (Bailey a BpsKo
htte

giaprofile table is based on the Dayhoff model of
gribskov and Veretnik 1996). The amino acids in each col-

stined to be evolving at a different rate, as reflected in the amount
variation that is observed. As with the average model, the object is to con-
of the 20 amino acids as a possible ancestor of the pattern of each column. In
e evolutionary model, the evolutionary distance in PAM units that would be required to
give the observed amino acid distribution in each column is determined. Recall that each
PAM unit represents an overall probability of 1% change in a sequence position. For exam-
ple, in the original Dayhoff PAM1 matrix for an evolutionary distance of 1 PAM unit (very
roughly 10 my), the probability of an I not changing is 0.9872, and the probabilities for
changing toa T ora V are 0.0011 and 0.0057, respectively. All of the probabilities of chang-
ing I to any other amino acid add up to 1.0000, for a combined probability of change of
1% for I. For an evolutionary distance of n PAM, the PAM1 matrix is multiplied by itself
n times to give the expected changes at that distance. At a distance of 250 PAMs, the above
three probabilities of an I not changing or of changing to a T or V are 0.10, 0.06, and 0.15,
respectively, representing a much greater degree of change than for a shorter time, as might
be expected (Dayhoff 1978).
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Do not confuse these
probabilities of one
amino acid changing
to another in the orig-
inal Dayoff PAM250
matrix with scores
from the log odds form
of the PAM250
matrix, which have
been used up to now.
The log odds scores are
derived from the origi-
nal Dayhoff matrix by
dividing each proba-
bility of change with
the probability of a
chance matching of
the amino acids in a
sequence alignment;
i.e., that the one
amino acid is not an
ancestor of the other.
These ratios are the
converted to log
rithms.

Thus, for the example of the msa column 1 with 5 Ile (I), 3 Thr (T), and 2 Val (V), the
object is to fihd what amount of PAM distance from each of the 20 amino acids as possi-
ble ancestof8iill generate this much diversity. This amount can be found by a formula giv-
of information (entropy) of the observed column variation given the
in the evolutionary model,

H = —az falOg(Pa) (1)

ion of each amino acid a in the msa column and p, is the
cid when derived from a given ancestor amino acid. For
culated for each 20 ancestor amino acids and for a large
AM1, PAM2, PAM4, . . .. ). The distance that gives
umn-possible ancestor combination is the best esti-
olumn diversity from that ancestor. This analysis
,3, ... 20) as to how the amino acid frequen-
next step in the evolutionary profile con-
. predicts F by the now-familiar Bayes

P (F | Ma ) = paal aal X paa2faa2 X paa3faa3 ......... paa (3)

i "a raised to the power of

sa column, as defined above. From
ossible distributions that give rise to the msa col-
ollows:

Wu =l (Mu l F) =/ (Mrandom l F) (4)

where W, is the weight given to M, and P (M;andom | F) is calculated as above using the
background amino acid distribution.
The log odds scores for the profile (Profile;j) are given by:

PrOﬁleij = 108 [ Z’ (Wai X paij)/prandomj] (5)

where W,; is the weight of an ancestral amino acid a at row i in the profile, p,;; is the fre-
quency of amino acid j in the PAM amino acid distribution that best matches at row i, and
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Prandom j 18 the background frequency of amino acid j. An example of a profile matrix for
the ATP-dgpendent RNA helicase (“DEAD” box family) from the M. Gribskov laboratory
is given in re 4.12.

s of the evolutionary profile is demonstrated by the following: A profile for
oxin family was prepared from six sequences. This profile was then used

axis and for the true negatives (unrelated sequences) on the x axis.

amdhthe x axis gives the probability of correct identification. The
e when it is truncated to the first 50 incorrect sequences,
or success in a database search (Gribskov and Veretnik
search, the ROCs5g, 95.6 = 0.6% of the known family
h of SwissProt by an evolutionary profile, whereas 93.0
e profile method (Gribskov and Veretnik 1996). The

identified
i sing 12 training sequences and 2—3% by using 134

€ Was 1ncreg
sequences.

Block Anal

Like profiles, blg
lacking insert g
matches and g
an msa align

sa. Blocks differ from profiles in
d, every column includes only
searching for a section of
d'rcgions may also be found by
me length. These patterns may
ed by a short spacer region
o characters, and so on,
e length, and when
The first align-
patterns in

matching ¢
ers and then by another set
ces start to be different. These patte
Cy ed, the matching sequence characters
me is type were performed by computer prog
seqfiences (Henikoff and Henikoff 1991; Neuwald and G s locat-
edlin different regions in a set of sequences may be used a2 msa (Zhang et al.

994 alighed sequence pairs (Miller et al.
ods are also used to locate the most alike
al. 1993; Lawrence and Reilly 1990). Web sites that per-
pes of analyses are discussed below and also given in Table 4.1. Final-
ation content of these tables can be displayed by a sequence logo (see p. 195).
at few of these types of analyses presently provide a method for phylogenetic esti-
ates of the sequence relationships so that sequence weighting can be used to make the
changes more reflective of the phylogenetic histories among the sequences. Additionally,
except where noted, these methods do not use substitution matrices such as the PAM and
BLOSUM matrices to score matches. Rather, they are based on finding exact matches that
have the same spacing in at least some of the input sequences, and that may be repeated in
a given sequence.

Extraction of Blocks from a Global or Local Multiple Sequence Alignment

A global msa of related protein sequences usually includes regions that have been aligned
without gaps in any of the sequences. These ungapped patterns may be extracted
from these aligned regions and used to produce blocks. Blocks found in this manner are
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A. The multiple sequence alignment.

rhle scoll
dbp2_schpo
dbp? yeast
dbpa_ecoli
rm6Z_drome
pSE_human
cthlb_ecoli
yn2l_casel
yhmS_yeast
meil _drome
drel_yeast
ifda rabit
ifdl_human
vasa_droms
srmb_ecoli
DEAD ecoli
ifda_oryaa
DEAD klepn
pli0_mouse
pad_human
ifda_drome
dedl yeast
mela_ yeast
prif_yeast
if4n_huaman
ani_xenla
dbpl_yeast
if4da yeast
spbd_yeast
ifd4a_rcasel
pris_yeast
if42 mouse
dhhl_yeast
db73_drome
ykid4_yeast
yba22 yesast
yhwo_yeast
glhl_caeel

GVDVLVATES
GVEICIATFG
GSEIVIATIG
APHIIVATHFD
GCEIVIATEG
GVEICIATEG
GVDILIGTTS
RPHITVATEG
KPHIIIATEG
EVOLIIATEG
RPDIVIATPG
APHITVGTEG
ABHIIVGTRG
GCHVVIATEG
RODIVVATTG
GROIWGTRG
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EFIDILTLHD
EVFOHLNRERY
FVLOLASEEWV
FLYDHLHATE
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ALAHHINSSG
HRIEHFCEEGT
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- « BFRVDEY
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« « LEPEYI
« » ITFEGT
» « » « FOCRAY
s + « LDLERL
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TYLVLOEADR
NTLVHDEADR
TYLVLOEADR
TYLVLOERDR
EVVVLORADR
EFLIMODEADR
KEFLYHOEADR
RILVLOEADE
EILVHDOELDR
EMFVLOEADE
EMFVLOEADE
REVVLOEADR
ETLILDEADR
BGLVLOBEADE
EMFVLOEADE
BELVLOEADE
EILVLDEADR
OHIVLOEADE
ELPYLOEADE

MLOMGFINDI
HMLOMGEFEPQL
MLDMGFEPQI
MEDMGFSDAT
HLOMGFEPQI
HLDMEFEPQI
MYDLGFIEDT
TLHMDFEVEL
LLOMEFGFVL
LISTOEFCHEHL
HLEEGFQDEL
HLSRGFRDQL
HLSREFED{I
HLOMGEESEDM
HLOMGERGIT
HLEMGEFTEDY
HLERGFED{T
HLEMGFTEDV
HLOMGFEPII
LLEQDFVQIN
HLERGFED]T

EYLVLOEADR MLOMGFEPQI
DYEVLOEADR LLETGFRDOL
ETLVLOEADE MYDLGFEDQV
EMLVLOEADE MLEHGFEEQI
EYLVLOEADR MLOMGFEPQL
EYLVLOEATH MLMMGFEPQL
EMFILDEADE MLSSGFEEQI
SNVVMDEADR LLDMSFLEDT
EMFVLOEADE MLERGFEDQI
TFYVHMDEADR LFDLGFEPQI
FEMFVLDEADE MLSRGFEDOQI
SLFIMDEADE MLSRDFETII
EFLVIDEADR THOAVEOHWL
EYIVLDEGDE LHELGFDETI
NTLILDEADR LLJDGHFDEF

EYLVLDEADT

LLTETFADHL

RFFVLOEADR MIDRMGFGTD

Figure 4.12. msa and the derived evolutionary profile.




B. The evolutionary profile. Note the location of red conserved regions in the alignment in the corresponding profile of these
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Figure 4.12. Continued.
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only as good as the msa from which they are derived. Using the BLOCKS
(http:// blocks.fhcerc.org/blocks/process_blocks.html), blocks of width 10-55 are
extracted fj a protein msa of up to 400 sequences (Henikoff and Henikoff 1991, 1992).

The prog cepts FASTA, CLUSTAL, or MSF formats, or manually reformatted msas.
Several t alyses may be performed with such extracted blocks. The BLOCKS serv-
er pri erates blocks from unaligned sequences. The eMOTIFs server at
http://d edu/emotif/ (Nevill-Manning et al. 1998) similarly extracts motifs
from sa formats and provides a formatter for additional msa formats.

Thesg are discussed below in greater detail.

Pattern Searching

d on groups of related proteins, and the amino acid pat-
nd in the Prosite catalog (Bairoch 1991). This catalog
hemical functions on the basis of amino acid pat-
equently, these families were searched for amino
et al. 1990), which finds patterns of the type
aa2 d2 aa3, w ed amino acids and d1 and d2 are stretch-
of intervening sg ong. These initial patterns are then orga-
ized into blocks 6 ¢ by the Henikoff PROTOMAT pro-
gram (Henikoff, 199 S database can be accessed at
http://www.blo and the ed to produce new blocks by
the original pg g method or 6 d below.

Although stully for making atabase, the MOTIF program is
i ; program distinguishes true
ptifs occur in a number of
one sequence. As the
patterns of a given
5-amino-acid-
otif, even

[ ysis was
e located
eins that
as those in
terns by the )

O (K

anid patterns by re
and tend not to be internal
otif increases, there are many possiD
hgt only a few characters match, e.g., >10°p

long n with only five matches. The MOTIF progt

for g@dom sequences, thus making it difficult to decide nd motif
reglly is. This problem has been circumvented by combin artalysis performed by
MO D. , which is based on sound sta-

gotithm called Aligned Segment Statistical Eval-

dcvised (Neuwald and Green 1994) that can find patterns
o acids long, group them, and provide a measure of the statisti-
¢ of the patterns. These patterns may also include certain pairs, the 26 posi-
oring pairs in the BLOSUMG62 scoring matrix. Consideration of all BLOSUM pairs is
not possible because this would greatly increase the complexity of the analysis.

The efficiency of ASSET is achieved by a combination of an efficient pattern search
strategy called the depth-first method, which assures searching for the same patterns only
once, and the use of formulas for efficiently organizing the patterns. Low-complexity
regions with high proportions of the same residue and use of sequences, some of which are
more similar than the others, can interfere with the ability of the method to find a range of
patterns. ASSET removes low-complexity regions and redundant sequences from consid-
eration. The program was easily able to find subtle motifs in the DNA methylase, reverse
transcriptase, and tRNA ligase families, and previously identified by the MOTIF program.
In addition, however, ASSET gave these motifs an expect score, the probability that these
are random matches of unrelated sequences, of <0.001. The program also found motifs in
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families with only a fraction of the sequences sharing a motif (the acyltransferase family)
f distantly related sequences sharing the helix-turn-helix motif. Finally, the
several repeat sequences in a prenyltransferase and ankyrin-like repeats in
in. This source code of the program is available by anonymous FTP from
pub/neuwald/asset. The European Bioinformatics Institute has a Web
complex pattern-finding program (PRATT) at http://www2.ebi.ac.
t al. 1995).

Blocks Produced by m Unaligned Sequences

server can extract a conserved, ungapped region from a
k. This same server can also find blocks in a set of

found in step 1 and uses the program
tend them, orders the resulting blocks,
uences. Since 1993, the Gibbs sam-
nding the initial set of short pat-
ifs. This program is based on
significant common pat-

pler (see below)
terns also by s
a statistical a
terns in a se

Lawrence et al. (1993) is
r the MOTIFS or Gibbs
o consolidate the pat-

st searches for b
1dentify patterns, then the P
ingful blocks. The results of both

if analysis

B, width = 11
101 VLSTDNKNYIT
105 VLATDYKNYAT
IQKVAGTWYSLA 110 VLDTDYKKYLL
27 NFNVEKINGEWHTII 101) 143 DLSSDIKERFA
14 NFDKARFAGTWYAMA 77) 106 IIDTDYETFAV

B. Gibbs sampler analysis

Lipocald, width = 15 LipocalB, width = 11
BBP_PIEBR 16 NEFDWSNYHGKWWEVA ( 70) 101 VLSTDNKNYII
ICYA_MANSE 17 DFDLSAFAGAWHETA ( 73) 105 VLATDYKNYAT
LACB_BOVIN 25 GLDIQKVAGTWYSLA ( 70) 110 VLDTDYKKYLL
MUPZ2_MOUSE 27 NFNVEKINGEWHTII ( 68) 110 IPKTDYDNFLM
RETB_BOVIN 14 NFDKARFAGTWYAMA ( 77) 106 IIDTDYETFAV
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In the abgve example, two blocks identified as Lipocal A and B are reported using both
the MOTIEf@nd Gibbs sampler programs for step 1, the initial pattern-finding step. The
m is based on a heuristic method that will always find motifs, even in ran-
whereas the Gibbs sampler discriminates found motifs based on sound
s. These blocks are identical to those determined from analysis of three-
ures. Note that MOTIF aligned MUP2_MOUSE incorrectly in the B

a MFRRKAFLHWYTGEGMDEMEF TEAESNMNDPVAEYQQY
MFKRKAFLHWYTGEGMDEMEF TEAESNMNDLVSEYQQY
MFKRKAFLHWYTGEGMDEMEFTEVRANMNDLVAEYQQY
MFKRKAFLHWYTSEGMDELEFSEAESNMNDLVSEYQQY
MFKRKGFLHWYTGEGMEPVEFSEAQSDLEDL | LEYQQY
MFRRKAF LHWF TGEGMDEMEF TEAESNMNDLVSEYQQY
MFRRKAFLHWYTGEGMDEMEFSEAEGNTNDLVSEYQQY
MFRRKAFLHWYTGEGMDEMEF TEAESNMNDLMSEYQQY
MFRRKAFLHWYTGEGMDEMEFTEAESNMNDLVAEYQQY
MFRRKAFLHWYTGEGMDEMEFTEAESNMNDLVHEYQQY
MFRRKAFLHWYTGEGMDEMEF TEAESNMNDLVSEYQQY
MFRRKAFLHWYTGEGMDEMEFTEAESNMNELVSEYQQY
MFRRKAFLHWYTLEGMEELEFTEAESNMNDLVYEYQQY
MFRRKAFLHWYTNEGMD | TEFAEAESNMNDLVSEYQQY
MFRRKAFLHWYTSEGMDEMEFTEAESNMNDLVSEYQQY
MFRRKRFLHWYTGEGMDEMEFTEAESNMNDLVSEYQQY
MFRRNAF LHWYTGEGMDEMEF TEAESNMNDLVSEYQQY
MFRRQAF LHWYTSEGMDEMEF TEAESNMNDLVSEYQQY
MFSRKAFLHWYTGEGMEEGDFAEADNNVSDLLSEYQQY

MFGKRAFVHHYVGEGMEENEFTDARQDLYELEVDYANL
MFKKRAFVHWYVGEGMEEGEFTEAREN | AVLLERDFEEV
MFVKRAFVHWYVGEGMEEGEFAEARDDLLALEKDYESV
MYAKRAFVHWYVGEGMEEGEFAEAREDLAALEKDYEEY
MYAKRAFVHWYVGEGMEEGEFSEARED | AALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFSEAREDLAALEKDFEEV
MYAKRAFVHWYVGEGMEEGEFSEAREDLAALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFSEAREDMAALEKDYEEV
MYAKRAFVRWYVGEGMEEGEFSEVREDLAALEKDYEEY
MYAKRAFVHWYVGEGMEEGEFTEAREDLAALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFTEAREDLAALERDY I EV
MYAKRAFVHWYVGEGMEEVEFSEAREDLAALEKDYEEY
MYAKRAFVHWYVSEGMEEGEFAEAREDLAALEKDYDEY
MYSKRAFVHWYVGEGMEEGEFSEAREDLAALEKDYEEY
MYSKRAFVHWYVGEGMEEGEFSEAREDLAALERDYEEY

b MF.K. .FVH.F..EGMQ..QFPQ...Q...... QF. ..
YR L Y N NAN N NY
w W E EGE E Ew
D DSD D D
T
C MF.KR.FLHWFT.EGMQ..QFPE...Q..DLI.DYQQY
R Y N NA N L
W E EG E M
D DS D vV
T

Figure 4.13. Aligned block of 34 tubulin proteins. (a) The sequences are divided into two groups
based on the occurrence of R or L in the fourth position and Y in the last position. (b) Specific sub-
stitution groups found in the columns of the block. If a group cannot be found, then the position is
ambiguous and a dot is printed at the position. (c) If only the first group of sequences is used, a more
specific motif may be found because sequences in this group are more closely related to each other.
(Reprinted, with permission, from Nevill-Manning et al. 1998 [copyright National Academy of Sci-
ences].)
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block. The Gibbs sampler results may differ when the same sequences are submitted
repeatedly with a different initial alignment (see below).

The eMOTIF Method of nalysis

different but extemely useful method of identifying motifs in protein
described (Nevill-Manning et al. 1998). From the BLOCKS database
roteins in the Prosite catalog) and the HSSP database (derived from
pradicted structural similarities), a set of amino acid substitution
gaghiicolumn in all of the alignments was found. These patterns
in the amino acid substitution matrices. A statistical anal-
ino acids that are found together in the same msa col-
at are found in different columns at the 0.01 level of sig-
on groups that met this criterion were found in the
ely. For example, the chemically aromatic group of
g define a group often located in the same column

proteins, each column is examined to see
mn, as illustrated in Figure 4.13. In col-
g group, M is used in column 1 of the
, which are members of the group
in the motif. The final motif
d, a motif may be made for
ond motif (¢) has less vari-
 thus would be more likely to
e sensitive motif for those

mn 1, M is alwa
motif, as shown i
FYW, are found is grot
shown in b deg 1ation in a¥
only the first Sequences, and ¥
ability and.g thicitfor the first
earch (1.8

Y E

he individual amino
e is given by the

of each motif is estimated from
f SwissProt database. The probability O

prod the probability sums in each colum p(M) X 1 X
(p(FEEPIW)+p(y)] X [p(Y)+p(R)] x. .. This value has & 500d esti-
mgte’of false positives, or of the selectivity of the motif, in'% Both the sen-

ifivity a ount in using the motif for a
quences used to generate the motif but
es a large set of motifs, some more and some less
sequences. The more sensitive ones, which are also the most
e value of p(Motif), are then chosen. Some are useful for specifying
a protein superfamily. A database of such motifs called Identify is a useful
rce for discovering the function of a gene (Nevill-Manning et al. 1998;
http://dna.stanford.edu/emotif/).

STATISTICAL METHODS FOR AIDING ALIGNMENT

Expectation Maximization Algorithm

This algorithm has been used to identify both conserved domains in unaligned proteins
and protein-binding sites in unaligned DNA sequences (Lawrence and Reilly 1990),
including sites that may include gaps (Cardon and Stormo 1992). Given are a set of
sequences that are expected to have a common sequence pattern and may not be easily rec-
ognizable by eye. An initial guess is made as to the location and size of the site of interest
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in each of the sequences, and these parts of the sequence are aligned. The alignment pro-
ate of the base or amino acid composition of each column in the site. The
then consists of two steps, which are repeated consecutively. In step 1, the

are used in turn to provide new information as to the expected base or
ion for each column in the site. In step 2, the maximization step, the
amino acids for each position in the site found in step 1 are substi-
ep 1 is then repeated using these new counts. The cycle is
onverges on a solution and does not change with further
ation of the site in each sequence and the best estimate of
column in the site will be available.

ere are 10 DNA sequences having very little similarity
cleotides long and thought to contain a binding site
biochemical and genetic evidence. As we will later
EME, the size and number of binding sites, the
not the site is present in each sequence do not
example, the following steps would be used
ocation of the binding sites in each of the
sequences.

The Initial Setup of the Algorithm

The 20-residue-long binding motif patterns in each sequence are aligned as an initial
guess of the motif. The base composition of each column in the aligned patterns is then
determined. The composition of the flanking sequence on each side of the site provides
the surrounding base or amino acid composition for comparison, as illustrated below.
For illustration purposes, each sequence is assumed to be the same length and to be
aligned by the ends, and each character in the alignment represents five sequence posi-
tions (o, not in motif; x, in motif).

00000000XXXX00000000
00000000XXXX00000000
0O0000000OXXXX00000000
00000000OXXXX00000000
O0000000XXXXO00000000
O0000000XXXXO00000000
00000000XXXX00000000
0O0000000XXXXO00000000 .
Columns defined
00000000XXXX00000000 mWENIEINLERY

00000000XXXX00000000 RECLELIgaul
sequences

| | | | provide initial
estimates_ of
RERRERR BEREERRER frequencies of
amino acids in
each motif

column

Columns not in motif provide
background frequencies
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The number of each base in each column is determined and then converted to
fractions. Suppose, for example, that there are four Gs in the first column of the 10
sequences, then the frequency of G in the first column of the site, fsgc = 4/10 = 0.4.
This procedure is repeated for each base and each column. For the rest of the
sequences not included in the sites, the background frequency of each base is calcu-
lated. For example, let one of these four values for the background frequency, the fre-
quency of G, be fbg = 224/800 = 0.28. These values are now placed in a 5 X 20
matrix of values, the first column for the background frequencies, and the next 20
columns for the base frequencies in each successive column in the sites. Thus, the
counts in the first three columns of the matrix may appear as shown in Table 4.2.

The following calculations are performed in the expectation step of the EM algo-
rithm:

1. The above estimates provide an initial estimate of the composition of the site
and the location in each sequence. The object of this step is to improve this esti-
mate by discriminating to the greatest possible extent between sequence within
and sequence not within the site. Using the above estimates of base frequencies
for (1) background sequences that are not within the site and (2) each column
within the site, each sequence is scanned for all possible locations for the site to
find the most probable location of the site. For the 10-residue DNA sequence
example, there are 100 —20 + 1 possible starting sites for a 20-residue-long site,
the first one being at position 1 in the sequence ending at 20 and the last
beginnning at position 81 and ending at 100 (there is not enough sequence for
a 20-residue-long site beyond position 81).

Sequence 1 XXXX0000000000000000
XXXX mp
111

OXXXX000000000000000
XXXX

O0OXXXX00000000000000
XXXX

...background
frequencies in the

Use previous

estimates of amino x
acid frequencies for

each column in the

remaining positions.

motif to calculate
probability of motif in
this position, and
multiply by...

The resulting score gives the likelihood that the motif

matches positions (a) 1-20, (b) 6-25, or (c) 11-30 in sequence 1.
Repeat for all other positions and find most likely

locator. Then repeat for the remaining sequences.
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Table 4.2. Column frequencies of each base in the example given

Background Site column 1 Site column 2
G 0.27 0.4 0.1
C 0.25 0.4 0.1
A 0.25 0.2 0.1
T 0.23 0.2 0.7
1.00 1.0 1.0

The first column gives the background frequencies in the flanking sequence. Subsequent columns give
base frequencies within the site given in the above example.

For each possible site location, the probability that the site starts is just the
product of the probabilities given by Table 4.2. For example, suppose that the
site starts in column 1 and that the first two positions in sequence 1 are A and
T, respectively. The site will then end at position 20 and the first two nonsites,
flanking background sequence positions, are 21 and 22. Suppose that these
positions have an A and a T, respectively. Then the probability of this location
of the site in sequence 1 is given by Pgjce1 sequencer = 0.2 (for A in position 1)
X 0.7 (for T in position 2) X Ps for next 18 positions in site X 0.25 (for A in
first flanking position) X 0.23 (for T in second flanking position) X Ps for next
78 flanking positions. Similar probabilities for Pgites, sequencer tO Psite7s, sequencel
are then calculated, thus providing a comparative set of probabilities for the site
location. The probability of this best location in sequence 1, say at site k, is the
ratio of the site probability at k divided by the sum of all the other site proba-
bilities P(Site k in sequence 1) = Psite k, sequence 1 / (Psite 1, sequence 1 +
Piite 2, sequence1 T - - - - - + Piite 78, sequence 1)- The probability of the site location
in each sequence is then calculated in this manner.

2. The above site probabilities for each sequence are then used to provide a new
table of expected values for base counts for each of the site positions using the
site probabilities as weights. For example, suppose that P (site 1 in sequence 1)
= 0.01 and that P (site 2 in sequence 1) = 0.02. In the above example, the first
base in site 1 is an A and the first base for site 2 is a T. Then 0.01 As and 0.02 Ts
are added to the accumulated list of bases at site column 1. This procedure is
repeated for every other 76 possible first columns in sequence 1. Similarly, site
column 2 in the new table of expected values is augmented by counts from the
78 possible column 2 positions in sequence 1, the first, for example, being 0.01
Ts. The weighted sequence data from the remaining sequences are also added to
the new table, resulting finally in a new estimate of the expected number of each
base at each site position and providing a new version of Table 4.2.

In this maximization step, the base frequencies found in the expectation step
are used as an updated estimate of the site residue composition. In this case, the
data are more complete than the initial estimate because all possible sites in each
of the sequences have been evaluated. The expectation and maximization steps
are repeated until the estimates of the base frequencies do not change.

An Alternative Method of Calculating Site Probabilities by the EM Algorithm

The example shown above uses the frequencies of each base in the trial alignment and
background base frequencies to calculate the probabilities of each possible location in
each sequence. An alternative method is to produce an odds scoring matrix calculated
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by dividing each base frequency by the background frequency of that base. The prob-
ability of each location is then found by multiplying the odds scores from each col-
umn. An even simpler method is to use log odds scores in the matrix. The column
scores are then simply added. In this case, the log odds scores must be converted to
odds scores before position probabilities are calculated.

Multiple EM for Moti

o local msas by the above expectation maximization method
Motif Elicitation (MEME) developed at the University of
omputing Center. The Web page for two versions of
gram that searches for blocks by an EM algorithm
ogram MetaMEME (which searches for profiles using
d at http://www.sdsc.edu/MEME/meme/website/
d Search Tool (MAST) for searching through
o0 be found at http://www.sdsc.edu/MEME/

rns in a single DNA or protein sequence
is conducted for a range of possible
is chosen on the basis of the log-
ac EM algorithm then iterates
ible motif models may be
ce of a motif per sequence, the
and the TCM model is for a
aodels are reflected in the
can use prior knowl-
the length of the
patterns in indi-
hat provide
Bailey and
are effectively erased
e output from a ParaMEME anal-

Kan 1995). On

The Gibbs

er statistical method for finding motifs in sequences is the Gibbs sampler. The
method is similar in principle to the EM method described above, but the algorithm is dif-
ferent. Like the EM method, given a set of sequences, the Gibbs sampler searches for the
statistically most probable motifs and can find the optimal width and number of these
motifs in each sequence (Lawrence et al. 1993; Liu et al. 1995; Neuwald et al. 1995). The
source code of the program code is available by anonymous FTP from
ncbi.nlm.nih.gov/pub/neuwald/gibbs9-95. A combinatorial approach of the Gibbs sam-
pler and MOTIF may be used to make blocks at the BLOCKS Web site (http://
www.blocks.thcrc.org/). The expected number of blocks in the search is one block for
approximately each 40 residues of sequence. The Gibbs sampler is also an option of the
msa block-alignment and editing program MACAW (Schuler et al. 1991), which runs on
MS-DOS, Macintosh, and other computer platforms and is available by anonymous FTP
from ncbi.nlm.nih.gov/pub/schuler/macaw.



Wednesday, June 28, 2000 MEME - Submission Form (Advanced Version) Page: 1

MEME -- Multiple EM for Motif Elicitation: Version 2.2

Motif discovery tool

Data Submission Form - Advanced Version YT

Your data will be processed on the Cray-T3E supercomputer at the San Diego Supercomputer Center and the results will be sent to you by e-mail.

Please enter the e-mail address where you would like your results sent:

[Optional] Please enter a brief description of your sequences.

[

Please enter the sequences which you believe share one or more motifs. The sequences may contain no more than 100,000 characters total in any of a large
number of formats. Please enter either:

1. the name of a file containing the sequences here: ]

2. or the actual sequences here:

MEME can choose the width of each motif favoring short or wide
motifs. Wide is recommended if there are fewer than 10 occurrences of

hink th f 3
gg;ed;gg? ;rendist:igﬁigg?gg;; tl?c . if Id any motif in your sequences. Choosing a number will cause all motifs
sequences? ﬂﬂv_ﬂ%{v E:hfgerent motifs would you reported to have that width. Select the width you want with the select

1xe 10 loox tor button below, or enter a width in the text window. Legal choices are

"short”, "wide" or any number from 2 to 300. (If you enter something in
the text window, it will override what is shown on the select button.)

One per sequence
@ Zero or one per sequence
{3 Any number of repetitions

Brief output format:

ADVANCED OPTIONS

Shuffle letters in input sequences:

DNA-ONLY OPTIONS

DNA palindromes: ignore allow force
complementary strand, 5' to 3' (inverse complement)

Additional strands/directions to search: main strand, 3' to §'
complementary strand, 3' to 5'

Strength of the prior (enter a positive number): m

Click here for mere information on MEME.
Return to MEME SYSTEM introduction.

You might be interested in trying other motif-making programs such as BLOCK MAKER at the Fred Hutchinson Cancer Research Center .

Please send comments and questions to: thailey@sdsc.edu .

Figure 4.14. The MEME Web page. The MEME program finds ungapped motifs (blocks) in unaligned protein or DNA sequences.
As indicated, the program can be directed to search for the size and expected number of motifs or can predict motifs based on a

statistical analysis based on the EM algorithm described in the text.




A. Summary line

MOTIF 1 width = 9 sites = 29.5

B. Letter-probability matrix

Simplified
motif letter-
probability
matrix

C. Information content of the profile

Information bits 6.2
content 56

22.0 bit
( its ) 5.0

4.4

3.7

3.1 * * %
2.5 * *x  x

1.9 * kkokkokok
1.2 *% **x*k*x**x
0.6 ** %%k %x%%*

0.0 ---=-----

D. The multilevel consensus sequence

Multilevel VDVLVNNAG
consensus L
sequence

Figure 4.15. Results produced by a MEME analysis of sequences for motifs. The output diagrams are discussed in the text.
(A) Summary line giving the number of the next motif found in order of statistical significance, width, and expected number
of occurrences in the given sequences. (B) Simplified motif letter-probability matrix showing the frequency of each amino
acid in each column of the matrix. The columns are the columns of the motif. For easier reading, the numbers shown are fre-
quencies rounded to the nearest one-tenth and multiplied by 10, and zeros are shown as colons. (C) The information content
of the profile is given in a diagram. Basically, the diagram shows the degree of amino acid variation in each column of the pro-
file: the lower the value, the greater the variation. The scale is logarithmic to the base 2 (bits). The total of all columns is also
shown. The subject of information content is discussed in greater detail below under position-specific scoring matrices. (D)
The multilevel consensus sequence shows all letters in each column of the motif that occur with a frequency of >0.2. Con-
tinued.
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E. The next motif

Motif 1 in BLOCKS format

BL MOTIF 1; width =9; seqgs =33

2BHD_STREX ( 81) VDGLVNNAG 1
3BHD_COMTE ( 81) LNVLVNNAG 1
ADH_DROME (8 VDVLINGAG 1
AP27_MOUSE ( 77) VDLLVNNAA 1
BA72_EUBSP ( 86) LDVMINNAG 1
BDH_HUMAN ( 138) MWGLVNNAG 1
BPHB_PSEPS (79 |IDTLIPNAG 1
BUCD_KLETE ( 80) FNVIINNAG 1
DHES_HUMAN (84 VDVLVCNAG 1
DHGB_BACME ( 87) LDVMINNAG 1
DHMA_FLAS1 ( 198) VDVIGNNTG 1
ENTA_ECOLI ( 73) LDALVNAAG 1
FIXR_BRAJA ( 112) LHALVNNAG 1
GUTD_ECOLI (82 VDLLVYSAG 1
HDE_CANTR ( 396) IDILUNNAG 1
HDHA_ECOLI (89 VDILVNNAG 1
NODG_RHIME ( 81) VDILUNNAG 1
RIDH_KLEAE (89 LDIFHANAG 1
YINL_LISMO (83 VDAIFLNAG 1
YRTP_BACSU (84 IDILINNAG 1
CSGA_MTXXA ( 13) VDVLINNAG 1
DHB2_HUMAN ( 161) LWAVINNAG 1
DHB3_HUMAN ( 125) IGILUNNVG 1
DHCA_HUMAN (83 LDVLUNNAG 1
FVT1_HUMAN ( 115) VDMLVNCAG 1
HMTR_LEIMA ( 103) CDVLVNNAS 1
MAS1_AGRRA ( 320) IDGLVNNAG 1
PCR_PEA ( 165) LDVLINNAA 1
YURA_MYXXA ( 90) LDLWANAG 1

1/

Figure 4.15. Continued. (E) Possible examples of the motif in the training set are shown. This list is based on using a posi-
tion-dependent scoring matrix (log-odds matrix) to search each sequence. The threshold score for displaying a site is chosen
such that the expected number of incorrect assignments will equal the expected number of missed but correct assignments.
Positions before and after the motif are also shown. Continued.
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F. Possible examples of motif 1 in the training set

Sequence name Start Score Site

2BHD_STREX 81 28.80 VAYAREEFGS VDGLVNNAG ISTGMFLETE
3BHD_COMTE 81 25.99 MAAVQRRLGT LNVLVNNAG ILLPGDMETG
ADH_DROME 86 22.33 LKTIFAQLKT VDVLINGAG ILDDHQIERT
AP27_MOUSE 77 24.36 TEKALGGIGP VDLLVNNAA LVIMQPFLEV
BA72_EUBSP 86 26.39 VGQVAQKYGR LDVMINNAG ITSNNVFSRV
BDH_HUMAN 138 23.46 PFEPEGPEKG MWGLVNNAG ISTFGEVEFT
BPHB_PSEPS 79 18.60 ASRCVARFGK IDTLIPNAG  IWDYSTALVD
BUDC_KLETE 80 20.97 VEQARKALGG FNVIVNNAG IAPSTPIESI
DHES_HUMAN 84 25.67 AARERVTEGR VDVLVCNAG LGLLGPLEAL
DHGB_BACME 87 26.39 VQSAIKEFGK LDVMINNAG MENPVSSHEM
DHMA_FLAS1 198 16.36 ILVNMIAPGP VDVTGNNTG YSEPRLAEQV
ENTA_ECOLI 73 21.90 CQRLLAETER LDALVNAAG ILRMGATDQL
FIXR_BRAJA 112 23.67 EVKKRLAGAP LHALVNNAG VSPKTPTGDR
GUTD_ECOLI 82 17.17 SRGVDEIFGR VDLLVYSAG |AKAAFISDF
HDE_CANTR 92 20.90 VETAVKNFGT VHVIINNAG  ILRDASMKKM
HDE_CANTR 396 29.32 IKNVIDKYGT IDILVNNAG  ILRDRSFAKN
HDHA_ECOLI 89 30.18 ADFAISKLGK VDILVNNAG GGGPKPFDMP
NODG_RHIME 81 30.18 GQRAEADLEG VDILVNNAG ITKDGLFLHM
RIDH_KLEAE 89 16.02 LQGILQLTGR LDIFHANAG AYIGGPVAEG
YINL_LISMO 83 14.65 VELAIERYGK VDAIFLNAG IMPNSPLSAL
YRTP_BACSU 84 27.41 VAQVKEQLGD IDILINNAG ISKFGGFLDL
CSGA_MYXXA 13 28.94 AFATNVCTGP VDVLINNAG VSGLWCALGD
DHB2_HUMAN 161 19.62 KVAAMLQDRG LWAVINNAG VLGFPTDGEL
DHB3_HUMAN 125 18.63 HIKEKLAGLE IGILVNNVG  MLPNLLPSHF
DHCA_HUMAN 83 30.23 RDFLRKEYGG LDVLVNNAG IAFKVADPTP
FVT1_HUMAN 115 2421 IKQAQEKLGP VDMLVNCAG MAVSGKFEDL
HMTR_LEIMA 103 24.02 VAACYTHWGR CDVLVNNAS SFYPTPLLRN
MAS1_AGRRA 320 27.93 VIAAVEKFGR IDGLVNNAG YGEPVNLDKH
PCR_PEA 165 23.97 VDNFRRSEMP LDVLINNAA  VYFPTAKEPS
YURA_MYXXA 90 18.59 IRALDAEAGG LDLVVANAG VGGTTNAKRL

Figure 4.15. Continued. (F) The next motif is given in the format used for the BLOCKS database (http://www.
blocks.fhcrc.org/blocks). The predicted locations of this motif in each sequence and the probability that the motif starts at that
location are shown. The sites reported depend on the motif search model used: (1) OOPS, the most probable location in each
sequence is given; (2) ZOOPS, the most probable location in each sequence is reported but only probabilities greater than 0.5
(a significant level for Bayesian statistics); TCM, all positions in each sequence with probabilities > 0.5 are shown. Continued.
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G. Position-specific scoring matrix
Log-odds matrix: alength = 20 w = 9 n = 9732 bayes = 8.36118

-2.725 0.818 -5.204 -4.539 -0.082 -4.432 -3.515 1.560 -4.218 1.814 0.701 -4.126 -3.146 -3.848 .
-3.441 -3.841 -4.023 -1.204 -4.313 -2.395 -0.889 -4.226 -4.009 -4.571 -3.882 -0.220 -4.682 -3.547 .
-0.768 -2.342 -4.756 -4.189 -2.319 0.376 -3.154 1.757 -3.870 0.288 0.918 -3.149 -4.229 -3.492 .
-3.379 -2.600 -5.066 -4.331 -0.586 -5.089 -3.668 -0.081 -4.098 3.045 1.107 -4.393 -4.287 -3.383 -
-1.373 -1.895 -3.823 -3.574 -1.086 -1.952 -0.466 1.480 -3.565 -2.234 -1.834 -3.701 -3.612 -3.536 -
-1.879 -0.980 -2.231 -4.187 -3.807 -3.562 -0.892 -3.306 -3.238 -2.753 -3.337 4.193 -2.276 -2.750 -
-2.460 -0.912 -2.2524.176  -3.833 -2.391 -0.968 -3.339 -3.262 -4.256 -3.364 4.217 -4.026 -2.768 -
-3.475 -1.137 -3.874 -3.535 -3.304 -2.080 -2.080 -2.826 -3.544 -3.127 -2.263 -3.592 -4.599 -3.533 -

-0.693 -3.833 -3.137 -3.879 -4.963 3.663 -3.647 -3.364 -3.716 -5.287 -4.212 -2.849 -4.518 -4.155 .
H. Motif letter-frequency matrix

Letter-probability matrix: alength =20 w =9 n = 9732

0.011063 0.032022 0.001403 0.002682 0.038055 0.003212 0.001962 0.165990 0.003143 0.322510 0.037503 0.011063
0.006738 0.001268 0.841023 0.027061 0.002026 0.013178 0.012108 0.003008 0.003632 0.003860 0.001564 0.011063
0.124630 0.003583 0.001915 0.003418 0.008070 0.089951 0.002520 0.190255 0.004000 0.112000 0.043590 0.011063
0.007032 0.002996 0.001544 0.003098 0.026845 0.002037 0.001765 0.053213 0.003415 0.756853 0.049683 0.011063
0.028238 0.004883 0.003655 0.005236 0.018977 0.017917 0.016240 0.156947 0.004942 0.019499 0.006470 0.011063
0.019895 0.009211 0.011023 0.003422 0.002878 0.005871 0.012089 0.005691 0.006199 0.013606 0.002282 0.011063
0.013301 0.009656 0.010865 0.003449 0.002827 0.013217 0.011467 0.005564 0.006098 0.004800 0.002240 0.011063
0.813801 0.008259 0.003529 0.005378 0.004079 0.016396 0.005304 0.007937 0.005014 0.010499 0.004806 0.011063
0.045249 0.001275 0.005879 0.004237 0.001291 0.878064 0.001790 0.005467 0.004450 0.002354 0.001244 0.011063

Figure 4.15. Continued. (G) Position-specific scoring matrix. This matrix is a log-odds matrix calculated by taking the log
(base 2) of the ratio of the observed to expected counts for each amino acid in each column of the profile. Columns and rows
in the matrix correspond to the amino acids in each column and positions of the motif, respectively. The counts for each col-
umn may have additional pseudocounts added to compensate for zero occurrences of an amino acid in a column or for a
small number of sequences, as discussed below for this type of matrix. (H) Motif letter-frequency matrix is given, showing the
frequency of amino acid found in each column of the profile. Columns and rows correspond to the amino acids in each col-
umn and rows to columns in the motif, respectively. Shown also are the numbers of types of residues, the width of the motif,
and number of characters in the sequences. Only portions of the output are shown.

o understand the algorithm, consider a simple example using the Gibbs sampler algo-
rithm to locate a single 20-residue-long motif in 10 sequences, each 200 residues long, as
was done above to illustrate the EM algorithm. The method iterates through two steps. In
the first step, the predictive update step, a random start position for the motif is chosen for
all sequences but for one that is chosen at random or in a specified order. So let us choose
sequence 1 as the outlier and use the other 9 to find an initial guess of the motif. These
other 9 sequences are aligned with random overlaps. The following figure illustrates how
this initial motif is located (an x equals 20 sequence positions, M indicates the random
location of the motif chosen for each sequence, and — the 20 initially aligned motif posi-
tions).

The objective is to find the most probable pattern common to all of the sequences by
sliding them back and forth until the ratio of the motif probability to the background prob-
ability is a maximum. This is accomplished by first using the initial alignment shown above
to estimate the residue frequencies in each column of the motif, and the sequence residues
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Steps of the Gibbs sampler algorithm.

A. Estimate the amino acid frequencies in the motif columns of all but

1 sequence. Also obtain background

XXX MXXXXXX XXX MXXXXXX
XXXXXXMXXX XXXXXXMXXX
XXXXXMXXXX XXXXXMXXXX
XMXXXXXXXX XMXXXXXXXX

XXXXXXXXXM XXXXXXXXXM
MXXXXXXXXX MXXXXXXXXX
XXXXMXXXXX XXXXMXXXXX
XMXXXXXXXX XMXXXXXXXX
XXXXXXXXMX XXXXXXXXMX

Random start Location of motif in each
positions chosen sequence provides first
estimate of motif composition

Use the estimates from A to calculate the ratio of probability of
motif to background score at each position in the left out sequence.

This ratio for each possible location in the sequence is the weight

of the position.

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
M-> M-> M-> M-> M->

the left out sequence by a

eights to bias the choice.
Estimated location of the motif in left out sequence

Repeat steps A to C >100 times.

that are not included in the motif to estimate the background residue frequencies. For
example, if these sequences are DNA sequences and the first column of the estimated motif
in the 10 sequences includes 3 Gs, then the value for f; coumn1 = 3/9 = 0.33. Similarly, let
+, column2 = 1/9 = 0.11 for illustration. These frequencies are determined for each of the 20
columns in our example. Similarly, if there are 240 Gs among the 10 X 80 = 800 sequence
positions not within the estimated motif, then f; pacigrouna = 240/800 = 0.30. Also let
1, background = 180/800 = 0.225. If the first two positions in sequence 1 are G and T in that
order, then the probability of the motif starting at position 1, Q, is calculated as 0.33 X
0.11 X ... ... X flast base, column20- Lhe background probability of this first possible motif,

P, is also calculated as 0.30 X 0.225 X . . . .. X fiast base, background-
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Note the difference
between the Gibbs
sampler method and
the EM method, which
calculates the proba-
bility of the entire
sequence using the
motif column frequen-
cies within the motif
and the background
frequencies elsewhere.

CHAPTER 4

The ratio, Q,/P; is designated as weight A; for motif position 1 in sequence 1. A;s are
d for all other 100 — 20 + 1 = 81 possible locations of the 20-residue-long
nce 1. These weights are then normalized by dividing each weight by their

ortional to the weight of that position so that a higher scoring position
chosen. (You can think of a bag with 81 kinds of balls, with the num-

prevalent ones.) This position in the left-out sequence is then used
or the motif in sequence 1. The procedure is then repeated.
e scanned, align the motifs in the other 9 sequences with
mated location found above, and so on. This process is
acies in each column of the motif do not change. For dif-
ber of iterations needed may range from several hun-

ing
residug

e more accurate the initial estimate of the motif in
he pattern location in the outlier sequence. The
e the sequence alignments in a direction that
aent to search for other possible better loca-
ted in several sequences by chance, the
pattern that the algorithm can search
he optimal motif and the prob-

step in the @
s a better score
ns. When corre
compositions of {
for in the other the
ability distribu ptif locatio
Several add dures are used

pance of the algorithm.

id counts in the motif and the
dded to the counts in the
combining prior and
e counts may be esti-
h give frequencies
et al. 1995).
mula bi =
¢ number of
n the sequences (Lawrence

OB etaticti N2 1S

gqucnce are es
equences. This step is
mation to improve the estimation
Pirichlet mixtures (see discussion of
d based on prior information from amino
issing background counts for each residue b; 4
, B where B is chosen based on experience with the

prevent the algorithm from getting locked in a sub-
MM method (see below), noise is introduced for this pur-
s sampler, after a certain number of iterations, the current alignments
ted a certain number of positions to the right and left, and the scores from these
shifted positions are found. A probability distribution of these scores is then used as a
basis for choosing a new random alignment.

3. The results of a range of motif widths can be investigated. The major difficulty in
exploring motif width is to arrive at a criterion for comparing the resulting scores. One
suitable measure is to optimize the average information (see below) per free parameter
in the motif, a value that can be calculated (Lawrence et al. 1993; Liu et al. 1995). The
number of free parameters for proteins is 20 — 1 = 19, and for DNA, 4 — 1 = 3, times
the model width.

4. The method can be readily extended to search for multiple motifs in the same set of
sequences.

5. The method has been extended to seek a pattern in only a fraction of the input
sequences.
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The Gibbs sampler was used to align 30 helix-turn-helix DNA-binding domains show-
ittle sequence similarity. The information per parameter criterion was used to
otif width. Multiple motifs were found in lipocalins, a family with quite dis-
equences separated by variable spacer regions, and also in protein iso-
subunits, which have very large numbers of repeats of several kinds
93). Thus, the method is widely applicable for discovering complex and

Hidden Markov Mod

that considers all possible combinations of matches, mis-
n alignment of a set of sequences (Fig. 4.16). A model of a
ed and initialized with prior information about the
es or more is then used as data to train the model. The
produce the most probable msa as posterior informa-
ed to search sequence databases to identify addi-
4 different HMM is produced for each set of
very successfully for speech recognition, and
ple (Rabiner 1989). In addition to their use
producing mul, al. 1994; Krogh et al. 1994; Eddy 1995,
1996), HMMs h ed is to produce an HMM that repre-
sents a sequen ofile ence composition and patterns
(Churchill 198 genes by p rames (Chapter 8), and to
produce pro predictions ( abase of profiles that repre-
ent proteis ‘based-on profile H eretal.1997).

good as, if no er methods. The approach
er strong features: It is probability theory, no
g is required, insertion/deletion needed, and experi-
ved information can be used. Two disd MMs are that at
quences and sometimes many more are ré ate the evolu-
istory (see Mitchison and Durbin 1995). The ¥ inprove an
g heuristic alignment. The two HMM programs in C& pequence Align-
pflent a i 994; Hughey and Krogh
1s available at http://www.cse.ucsd.edu/
’hmmer.wustl.edu/. The algorithms used for pro-
iscussed in Durbin et al. (1998). A comparison of HMMs
1s given at the end of this section.

representation of a section of multiple sequence alignment that includes
1ons and insertions was devised by Krogh et al. (1994) and is shown in Figure 4.6. This
HMM generates sequences with various combinations of matches, mismatches, insertions,
and deletions, and gives these a probability, depending on the values of the various param-
eters in the model. The object is to adjust the parameters so that the model represents the
observed variation in a group of related protein sequences. A model trained in this man-
ner will provide a statistically probable msa of the sequences.

As illustrated in Figure 4.6, the object is to calculate the best HMM for a group of
sequences by optimizing the transition probabilities between states and the amino acid
compositions of each match state in the model. The sequences do not have to be aligned
to use the method. Once a reasonable model length reflecting the expected length of the
sequence alignment is chosen, the model is adjusted incrementally to predict the
sequences. Several methods for training the model in this fashion have been described
(Baldi et al. 1994; Krogh et al. 1994; Eddy et al. 1995; Eddy 1996; Hughey and Krogh 1996;

is first

natively, th,
embers of
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A. Sequence alignment

ozzz
e X e o
S<mm
I~
44 0non

RED POSITION REPRESENTS ALIGNMENT IN COLUMN
GREEN POSITION REPRESENTS INSERT IN COLUMN
PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

Y

>

.

D3 D4
K] ) 14
M3 - M4

. match state ‘insert state ‘ delete state —> transition probability

Figure 4.16. Relationship between the sequence alignment and the hidden Markov model of the alignment (Krogh et al.
1994). This particular form for the HMM was chosen to represent the sequence, structural, and functional variation expect-
ed in proteins. The model accommodates the identities, mismatches, insertions, and deletions expected in a group of related
proteins. (A) A section of a multiple sequences alignment. The illustration shows the columns generated in a multiple
sequence alignment. Each column may include matches and mismatches (red positions), insertions (green positions), and
deletions (purple position). (B) The HMM. Each column in the model represents the possibility of a match, insert, or delete
in each column of the alignment in A. The HMM is a probabilistic representation of a section of a msa. Sequences can be gen-
erated from the HMM by starting at the beginning state labeled BEG and then by following any one of many pathways from
one type of sequence variation to another (states) along the state transition arrows and terminating in the ending state labeled
END. Any sequence can be generated by the model and each pathway has a probability associated with it. Each square match
state stores an amino acid distribution such that the probability of finding an amino acid depends on the frequency of that
amino acid within that match state. Each diamond-shaped insert state produces random amino acid letters for insertions
between aligned columns and each circular delete state produces a deletion in the alignment with probability 1. For example,
one of many ways of generating the sequence N K Y L T in the above profile is by the sequence
BEG - M1 - 11 - M2 - M3 - M4 - END. Each transition has an associated probability, and the sum of the probabilities of
transitions leaving each state is 1. The average value of a transition would thus be 0.33, since there are three transitions from
most states (there are only two from M4 and D4, hence the average from them is 0.5). For example, if a match state contains
a uniform distribution across the 20 amino acids, the probability of any amino acid is 0.05. Using these average values of 0.33
or 0.5 for the transition values and 0.05 for the probability of each amino acid in each state, the probability of the above
sequence N KY L T is the product of all of the transition probabilities in the path BEG - M1 - 11 -~ M2 - M3 - M4 - END,
and the probability that each state will produce the corresponding amino acid in the sequences, or 0.33 X 0.05 X 0.33 X 0.05
X 0.33 X 0.05 X 0.33 X 0.05 X 0.33 X 0.05 X 0.5 = 6.1 X 10~'°, Since these probabilities are very small numbers, amino
acid distributions and transition probabilities are converted to log odds scores, as done in other statistical methods (see pp.
176-177), and the logarithms are added to give the overall probability score. The secret of the HMM is to adjust the transi-
tion values and the distributions in each state by training the model with the sequences. The training involves finding every
possible pathway through the model that can produce the sequences, counting the number of times each transition is used

Continued.
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Durbin et al, 1998). For example, an EM algorithm from speech recognition methods
aum-Welch algorithm is used as follows:

initialized with estimates of transition probabilities and amino acid com-
ach match and insert date. If an initial alignment of the sequences is
other kinds of data suggest which sequence positions are the same, then
e used in the model. For other cases, the initial distribution of amino
each state is described below. The initial transition probabilities gen-
s from one match state to the next rather than favoring insert and
ild ore uncertainty into a sequence motif.

e model for generating each sequence in turn are exam-
such paths for each sequence. This procedure would nor-
of time computationally. Fortunately, an algorithm, the
duces the number of computations to the number of
length of the training sequences. This calculation pro-
given all possible paths through the model, and,
particular path may be found. Another algo-
ounts the number of times a particular state-
nino acid is required by a particular match

eters do not change sig-

2 of the sequences with the corresponding match, or each
Sequence. The co i the m¢ states in the HMM such
placed in the same column. For
ch state, a gap is added.

search a sequence database for additional sequences that
uence variation. In this case, the sum of the probabilities of all possi-
ce alignments to the model is obtained. This probability is calculated by the
ard component of the forward-backward algorithm described above. This analysis

and which amino acids were required by each match and insert state to produce the sequences. This training procedure leaves
a memory of the sequences in the model. As a consequence, the model will be able to give a better prediction of the sequences.
Once the model has been adequately trained, of all the possible paths through the model that can generate the sequence
N KY LT, the most probable should be the match-insert-3 match combination (as opposed to any other combination of
matches, inserts, and deletions). Likewise, the other sequences in the alignment would also be predicted with highest proba-
bility as they appear in the alignment; i.e., the last sequence would be predicted with highest probability by the path match-
match-delete-match. In this fashion, the trained HMM provides a multiple sequence alignment, such as shown in A. For each
sequence, the objective is to infer the sequence of states in the model that generate the sequences. The generated sequence is
a Markov chain because the next state is dependent on the current one. Because the actual sequence information is hidden
within the model, the model is described as a hidden Markov model.
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gives a type of distance score of the sequence from the model, thus providing an indi-
cation ofshow well a new sequence fits the model and whether the sequence may be
related e sequences used to train the model. In later derivations of HMMs, the
score ivided by the length of the sequence because it was found to be length-
depe z score giving the number of standard deviations of the sequence length-
corrg from the mean length-corrected score is therefore used (Durbin et al.
199§

Re Bayes block aligner, the initial or prior conditions were amino acid
subs BlocKlnumbers, and alignments of the sequences. The sequences
we W ¢ examine the model by producing scores for every possible
cQ for co . By using Bayes’ rule, these data provided posterior prob-
ons for inations of prior information. Similarly, the prior condi-
VIM are t ues given to the transition values and amino acid com-
he sequeng ide new data for improving the model. Finally, the
ides a pos distribution for the sequences and the maximum
probabilit represented by a particular path through the
. This path pry e sequence in the msa; i.e., the sequence plus
ches, inserts, an oure 4.16.

The success of aving appropriate initial or prior condi-
tions, i.e., a goog Or a sufficient number of sequences to
train the mode odel s pture, for example, the expected
amino acid freg d in vario d functional domains in pro-
teins. As the § are modified ounts from the training
sequence Ltions _should begi¥ mon patterns as one moves

gaences. [t at the model reflect not only
g sequences, but also p that might be present in
of the same protein family. Othe ill only recognize the
nces but not other family members. hing of the amino
acid £ cies is desirable, but not to the extent of s aserved pattern
infq 1on from the training sequences. Such proble g a method
called regularization to avoid overfitting the data to th@ ythe method
ifivolves usi i id distributi ¢ prior condition and then
raining information in a complemen-

amino acid composition as a prior condition for the match
, amino acid patterns that capture some of the important features of
cture and function have been used with considerable success (Sjolander et al.
. Other prior conditions include using Dayhoff PAM or BLOSUM amino acid sub-
stitution matrices modified by adding additional counts (pseudocounts) to smooth the
distributions (Tatusov et al. 1994; Eddy 1996; Henikoff and Henikoft 1996; Sonnhammer
et al. 1997; and see Chapter 2). Sjolander et al. (1996) have prepared particularly useful
amino acid distributions called Dirichlet mixtures to use as prior information in the match
states of the HMM. These mixtures provide amino acid compositions that have proven to
be useful for the detection of weak but significant sequence similarity. As an example, the
amino acid frequencies that are characteristic of a particular set of nine blocks in the
BLOCKS database have been determined. These blocks represent amino acid frequencies
that are favored in certain chemical environments such as aromatic, neutral, and polar
residues and are useful for detecting such environments in test sequences. The nine-com-
ponent system has been used successfully for producing an HMM for globin sequences
(Hughey and Krogh 1996). To use these frequencies as prior information, they are treated
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as possible posterior distributions that could have generated the given amino acid fre-
quencies as p@sterior probabilities. The probability of a particular amino acid distribution
given a kn requency distribution, i.e., 100 A, 67 G, 5 C, etc., where pA is the proba-
bility of A y the frequency of A, pG the probability of G, etc., and # is the total num-
ber of am given by the multinomial distribution

P (100A, 67G, 5C . ..) = n! pA'pG*” pC>. .../ 100! 67! 5! ... (6)

e multinomial distribution is the Dirichlet distribution
formulation is similar to that given in Equation 6 with a
actorial and powers reduced by 1. The idea behind using
if additional sequence data with a related pattern are
ire of multiplying prior probabilities with the likeli-
sterior distribution, the probability of finding the
2d statistically. Because the amino acid frequen-
several alternatives, a prior distribution that
is a method for weighting the prior distri-
distributions into a combined frequen-
hese mixtures is a complex mathe-
res recommended for use in
eviously (Karplus 1995) and
fter the prior amino acid
se are modified by training the
or each match state in the
iding the sum of all new
acids. In this fashion,
ibutions averaged

cy distribution, t
matical procedu
aligning protei
are available fi
frequencies a

quences. If a good prior
ed, it should be possible to train the
anual; Eddy 1996; Hughey and Krogh 1996). In
ce number, the more important the prior conditions. If the
1s >50, the initial conditions play a lesser role because the training
effective. As with any msa method, the more sequence diversity, the more
nging the task of aligning sequences with HMMs. HMMs are also more effective if
methods to inject statistical noise into the model are used during the training procedure.
As the model is refashioned to fit the sequence data, it sometimes goes into a form that
provides locally optimal instead of globally optimal alignments of the sequences. One of
several noise injection methods (Baldi et al. 1994; Krogh et al. 1994; Eddy et al. 1995; Eddy
1996; Hughey and Krogh 1996) may be used in the training procedure. One method called
simulated annealing is used by SAM (Hughey and Krogh 1996). A user-defined number of
sequences are generated from the model at each cycle and the counts so generated are
added to those from the training sequences. The noise generated in this way is reduced as
the cycle number is increased. Finally, the HMM program SAM has a built-in feature of
model surgery during training. If a match state is used by fewer than half of the sequences,
it is deleted. These same sequences then have to use an insert state in the revised model.
Similarly, if an insert state is used by more than half of the sequences, a number of addi-
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tional match, states equal to the average number of insertions is added, and the model has
to be revisedlaccordingly. These fractions may be varied in SAM to test the effect on the
odel produced (Hughey and Krogh 1996).

roduce an HMM for a set of related sequences, the recommended proce-
several models by varying the prior conditions. Using regularization by
let mixtures to the match states produces models that are more repre-

levels is another way to vary the training procedure and the HMM
odel is the one that predicts a family of related sequences with the
listiibution of NLL scores. An example of a portion of an HMM
ces is shown in Figure 4.17.

Motif-based Hid

MM method to find motifs (conserved sequence
ences and the spacer regions between them
MM program HMMER (Eddy et al. 1995).
okaryotic promoters with two conserved
atterns separated and Stormo 1992). A Meta-MEME
analysis may be : {E using the University of Califor-
nia at San Diegg n Markov models for produc-
ing a global mg HMMs is that the train-
ing set has tq sroduce a useful model for the
: o obtain a model if suitable
re of frequencies charac-
d as prior information
of combinations of
MM residues

0 acid frequen
grctural domains (the Dirichl@
ates of the model. This mixture is
1no atterns that are likely to be found. A di
is tha y different parameters must be found (the a ns, the num-
ber and positions of insert and delete states, and the state dd up to
thgfisands of parameters) to obtain a suitable model, and posc of the prior and
i parameters. When trying to make
0 produce a profile HMM, this problem is
data for training the model is even further reduced.
sed by Meta-MEME to circumvent this problem. First, another pat-
gorithm, the EM algorithm (discussed on p. 173), is used to locate ungapped
at match in the majority of the sequences. Second, a simplified HMM with a
uch reduced number of parameters is produced. The model includes a series of match
states that model the patterns located by MEME with transition probabilities of 1 between
them and a single insert state between each of these patterns, as illustrated in Figure 4.18.
As a result, fewer parameters need to be used, mostly for the amino acid frequencies in the
match states.

The most probable order and spacing of the patterns is next found. Another program
(Motif Alignment and Search Tool, or MAST; Bailey and Gribskov 1997) is used for this
purpose. MAST searches a sequence database for the patterns and reports the database
sequences that have the statistically most significant matches. The order and spacing of the
patterns found in the highest-scoring database sequences are then used by Meta-MEME as
a basis for designing the number of match and insert states and the transition probabilities
for the insert states. The match states are filled with modified Dirichlet mixtures (Baylor
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Figure 4.17. HMM trained for recognition of globin sequences. Circles in the top row are delete states that include the posi-
tion in the alignment; the diamonds in the second row are insert states showing the average length of the insertion, and the
rectangles in the bottom row show the amino acid distribution in the match states: V is common at match position 1, L at 2,
and so on. The width of each transition line joining these various states indicates the extent of use of that path in the training
procedure, and dotted lines indicate a rarely used path. The most used paths are between the match states, but about one-half
of the sequences use the delete states at model positions 56—60. Thus, for most of the sequences, the msa or profile will show
the first two columns aligned with a V followed by an L, but at 56-60, about one-half of the sequences will have a 5-amino-
acid deletion. (Reprinted, with permission, from Krogh et al. 1994 [copyright Academic Press].)

"

and Gribskov 1996), and the model is trained by the motif models found by MEME. For
the 4Fe-4S ferredoxins, a measure of the success of the HMM for database search, the
ROCs score (see p. 165), was approximately 0.6—0.8 for 4 to 8 training sequences, com-
pared to 0.95-0.96 using an evolutionary profile of 6 to 12 sequences. However, this fam-
ily was one of the most difficult ones to model, and other families produced an ROCs, of
0.9 or better when trained by 20 or more sequences.
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Start

Motif 1 Motif 2

Figure 4.18. The HMM used by Meta-MEME to estimate motifs in sequences. (Reprinted, with
permission of Oxford University Press, from Grundy et al. 1997.)

SCORING

roduction of the position-spe-
d by the MEME Web site is
nce to obtain the most
the PSSM. Alternatively, the
itional sequences that also
SM as representative of
ion provided by the
undly influences
by informa-
logo (see

Analysis of msas
cific scoring m
shown in Fig

ound with sequences. This situation can
, and the results can be displayed by a colore

of a matrix giving the
1derations arise in trying to tune the
e training sequences. First, if the number of
1s large and reasonably diverse, the sequences represent a
ing of all sequences that are ever likely to be found with that same
en column in 20 sequences has only isoleucine, it is not very likely that a dif-
amino acid will be found in other sequences with that motif because the residue is
probably important for function. In contrast, another column in the motif from the 20
sequences may have several amino acids, and some amino acids may not be represented at
all. Even more variation may be expected at that position in other sequences, although the
more abundant amino acids already found in that column would probably be favored.
Thus, if a good sampling of sequences is available, the number of sequences is sufficiently
large, and the motif structure is not too complex, it should, in principle, be possible to
obtain frequencies highly representative of the same motif in other sequences also
(Henikoff and Henikoff 1996; Sjolander et al. 1996).

However, the number of sequences for producing the motif may be small, highly diverse,
or complex, giving rise to a second level of consideration. If the data set is small, then unless
the motif has almost identical amino acids in each column, the column frequencies in the
motif may not be highly representative of all other occurrences of the motif. In such cases,
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it is desirable to improve the estimates of the amino acid frequencies by adding extra amino
acid counts, galled pseudocounts, to obtain a more reasonable distribution of amino acid
frequencies e column. Knowing how many counts to add is a difficult but fortunately
. On the one hand, if too many pseudocounts are added in comparison to
ts, the pseudocounts will become the dominant influence in the amino
searches using the motif will not work. On the other hand, if there are
nts, many amino acid variations may not be present because of the
ces. The resulting matrix would then only be useful for finding the
otif. In such a case, the pseudocounts will broaden the evo-
variations in other sequences. Even in this case, the pseu-
but serve to augment the influence of the real counts. In
unts should be added when there is a good sampling of
ed when the data are more sparse.

is to obtain an improved estimate of the probability
all occurrences of the blocks, and not just the ones
te of p., is f,, the frequency of counts in the data.
e estimate of p,, by adding prior information
nikoff 1996):

(7)

of amino acid a in col-
ocounts, respectively, in the
ger, the pseudocounts will

where 1., and
umn ¢, N, an

equences is N — 1.
ormulas or on the previous variations seen in
substitution matrices, including the Dayhoft PAM and
vide one source of information on amino acid variation. Another
wrichlet mixtures derived as a posterior probability distribution from the
acid substitutions observed in the BLOCKS database (see HMMs; Sjolander et al.
996).

One simple formula that has worked well in some studies is to make B in Equation 7
equal to VN, where N is the number of sequences, and to allot these counts to the amino
acids in proportion to their frequencies in the sequences (Lawrence et al. 1993; Tatusov et
al. 1997). As N increases, the influence of pseudocounts will decrease because VN will
increase more slowly. The main difficulties with this method are that it does not take into
account known substitutions of amino acids in alignments and the observed amino acid
variations from one column in the motif to the next, and it does not add enough pseudo-
counts when the number of sequences is small.

The information in scoring matrices may be used to produce an average sequence pro-
file, as illustrated in Figure 4.12. Rather than count amino acids, the scoring table values
are averaged between each possible 20 amino acids and those amino acids found in the col-
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umn of the scoring matrix. Zero counts in a column are not a problem because amino
acids not py@sent are not used in the calculations. Because these averaging methods do not
take into nt the number of sequences in the block, they do not have the desirable
effect of ed influence when there is a large number of sequences.

d of using the information from amino acid substitution matrices is to
on these matrices. Recall the log odds form of the matrices is derived
m of the frequency of substitution g;, of amino acid i for amino acid
ency of occurrence of amino acid a, p,. Then, b, may be estimated

f ps|udocounts in the column by (Henikoff and Henikoff 1996),

bm = Bch Where Qi = Z.qiu (8)

end on the observed data in that column (Tatusov
B, by the following conditional probabilities.

n c can als
, which is

b.., = B, Z prob (amino acid i|column ¢) X prob (amino acid ali)
alli (9)

= B, Z (n6i/Ne X qial Qi)

Iso to be estimated. As
o VN, where N is the
ifferences between

oes not take into account variations in amino aci olumns,
that i i i er pseudocounts. Using
¢, as an indicator, B, has been estimat-

(10)

where m is a positive number derived from trial database searches and m = m X B, =< min
( m X N, m/20) (the latter term meaning the minimum of the two given values). By this
formula and a given value of m, when N, = m X 20, the total number of pseudocounts B,
is greater, and when N, > m X 20, B, is smaller than the total number of real counts, N,,
regardless of the value of R.. The number of pseudocounts is also reduced when R, =1. In
a test search of the SwissProt and Prosite catalogs with various values of m, a value of 5-6
for m produced the most efficient PSSMs for finding known family members. Of the sev-
eral methods for making PSSMs discussed above, the one with pseudocounts derived by
Equations 9 and 10 was most successful. This search was performed with PSSMs derived
from blocks with amino acid counts also weighted to account for redundancy (Henikoff
and Henikoff 1996). However, pseudocounts added from Dirichlet mixtures, which also
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vary in each,column of the scoring matrix, are also very effective (Henikoff and Henikoff
1996; Tatus@y et al. 1997).

ocounts have been added to real counts of amino acids in each column of
SM may be calculated. The PSSM has one column (or row) for each posi-
and one row (or column) for each amino acid, and the entries are log
entry is derived by taking the logarithm to the base 2 (bit units, but
ral logarithms in nat units are used) of the total of the real counts plus
amino acid, divided by the probability of that amino acid (b, / N,).
prodiiced by MEME is shown in Figure 4.15G.

with the PSSM, the value of the first amino acid in the
st column of the PSSM, then the value of the second amino
atil the length scanned is the same as the motif width rep-
¢ odds scores are added to produce a summed score for
e process is repeated starting at the second position in
not enough sequence left. The highest log odds scor-
match statistically to the PSSM. Adding logarithms
ing the probabilities of the amino acids at each
d log odds score (S) to a likelihood or odds
e formula odds score = 2°. These odds
divided by the sum to normalize them
sequence location.

o define motifs in protein fam-
define regulatory sites, such
ese topics are discussed

example
define DNA
on junctions iy

sgquence cor 1 ores found in each col-
variation in the original training
otif. In some columns, only one amino acid may
others several may have been present. The columns with
1ons have more information than do the variable columns and will
nitive for locating matches in target sequences. There is a formal method
n as information theory for describing the amount of information in each column
that is useful for evaluating each PSSM. The information content of a given amino acid
substitution matrix was previously introduced (p. 83) and is discussed in greater detail
here. T. Schneider has prepared a Web site that gives excellent tutorials and a review on the
topic of information theory, along with methods to produce sequence logos (Schneider
and Stephens 1990) at http://www-lmmb.ncifcrf.gov/~toms/sequencelogo. html.

To illustrate the concepts of information and uncertainty (see above Web site), consid-
er 64 cups in a row with an object hidden under one of them. The goal is to find the object
with as few questions as possible. The solution is quite simple. First, ask whether the object
is hidden under the first or second half of the cups. If the answer is the first 32, then ask
which half of that 32, the first 16 or the second 16, and so on. The sequential questions
reduce the possibilities from 64-32-16-8-4-2-1, and six questions will therefore suffice to
locate the object. This number is also a measure of the amount of uncertainty in the data
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because this,;number of questions must be asked to find the object. After the first question

alculate uncertainty (the number of questions to be asked) may be derived
from th ility of finding the object under a given cup [p(object) = 1/64]. Uncer-

ilar to the hidden object example is found with amino acids in the
ere, the interest is to find which amino acid belongs at a particular
en We have no information at all, since there are 20 possible choic-
ainty is log,20 = 4.32.
vide information that reduces this uncertainty. If only one
n of the PSSM, the uncertainty is zero because there are
o acids are observed with equal frequency, there is still
d one question must be asked to find the answer, or
ing the uncertainty in this example is the sum of the
amino acid, or — [0.5 X log,0.5 + 0.5 X log,0.5]
ertainty (H,) in bits per symbol for column c of

(11)

s estimated by the frequency of
odds score for each amino
for the entire PSS

H=Y H. (12)

all columns

1n information theory because the
. The lower the value of the uncertainty H for
of the PSSM to distinguish real occurrences of the motif
es. Conversely, the higher the information content, calculated as
the more useful the PSSM.

g0s

Sequence logos are graphs that illustrate the amount of information in each column of a
motif. The logo is derived from sequence information in the PSSM described above. Con-
served patterns in both protein and DNA sequences can be represented by sequence logos.
A program for producing logos, along with several examples, is available from http://www-
Immb.ncifcrf.gov/~toms/sequencelogo.html. The Web site of S.E. Brenner at
http://www.bio.cam.ac.uk/seqlogo/ will produce sequence logos from an input alignment
using the Gibbs sampler method, and an implementation of an extension of the logo
method for structural RNA alignment (Gorodkin et al. 1997) is at http://www.cbs.dtu.dk/
gorodkin/appl/plogo.html. A logo representation for the BLOCKS database has been
implemented (Henikoff et al. 1995) and may be viewed when the information on a partic-
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ular block is retrieved from the BLOCKS Web server (http://www.blocks.thcrc.org/). An
example of a Block logo is shown in Figure 4.19. Another example of a simple graph of
information nt is given in Figure 4.15C. In this case, the information for the entire
motif has be ulated by the MEME server by summing the values in each column to
bits. Although logos are primarily used with ungapped motifs and
os of alignments that include gaps in some sequence positions may
the case, then the height of the column with gaps is reduced by the
ositions that are not gaps.

R B

L.

=MNMTIDWMN~oM

Logo of Gibbs Block D (Tcl) 9 sequences

Figure 4.19. A sequence logo. The logo represents the amount of information in each column of a
motif corresponding to the values in PSSM of the motif discussed above. The horizontal scale rep-
resents sequential positions in the motif. The height of each column gives the decrease in uncertainty
provided by the information in that column. The higher the column, the more useful that position
for finding matches in sequences. In each column are shown symbols of the amino acids found at
the corresponding position in the motif, with the height of the amino acid proportional to the fre-
quency of that amino acid in the column, and the amino acids shown in decreasing order of abun-
dance from the top of the column. From each logo, the following information may thus be found:
The consensus may be read across the columns as the top amino acid in each column, the relative
frequency of each amino acid in each column of the motif is given by the size of the letters in each
column, and the total height of the column provides a measure of how useful that column is for
reducing the level of uncertainty in a sequence matching experiment. Note that the highest values
are for columns with less diversity.




198 = CHAPTER 4

The height of each logo position is calculated as the amount by which uncertainty has
been decreaSed by the available data; in this case, the amino acid frequencies in each col-
umn of th tif. The relative heights of each amino acid within each column are calcu-
ining how much each amino acid has contributed to that decrease. The
umn c is given by Equation 11. Because the maximum uncertainty at a
hen no information is available is log,20 = 4.32, as more information
btained by new data, the decrease in uncertainty (or increase in the

R, =1l0g,20 — (H, +€,) (13)

nd €, is a correction factor for a small sequence num-
the logo column. The height of amino acid a at posi-
fac X R..

in sequences. Sequence logos are also produced
ry similar to the above except that there are
. Hence, the maximum amount of uncer-
at the sequence pattern is less random
nd this assumption limits the abili-

equences is called the relative
et al. 1997), and the decrease

ormation) in bits is given by

Rc = Z piclogz(pic/bi)

; is the background frequency of residue i in t
ugCertainty in colu is oi =2 i L0 b;

. ground frequencies
s than the background frequency,
particular residue in a logo column to be neg-
ge, the corresponding sequence character is inverted in
ss than expected frequency. There are also two ways used to illus-
ution of each character through the height of the symbol. The first method
1ibed above. The second method is to display symbol heights in proportion to the
ratio of the observed to the expected frequency, i.e., by the fraction (p;/b; ) / (Zan; pic/b;)
for each symbol i. Gaps are included in the analysis by using p.., = 1 and, as a result, will
always give a negative contribution to the information (Gorodkin et al. 1997).

MULTIPLE SEQUENCE ALIGNMENT EDITORS AND FORMATTERS

Once a multiple sequence alignment has been obtained by the global msa program, it may
be necessary to edit the sequence manually to obtain a more reasonable or expected align-
ment. Several considerations must be kept in mind when choosing a sequence editor,
which should include as many of the following features as possible: (1) provision for dis-
playing the sequence on a color monitor with residue colors to aid in a clear visual repre-
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sentation of the alignment, (2) recognition of the multiple sequence format that was out-
put by the program and maintenance of the alignment in a suitable format when the
editing is leted, (3) provision of a suitable windows interface, allowing use of the
mouse to elete, or move sequence followed by an updated display of the alignment.
In additi are other types of editing that are commonly performed on msas such
as, for e ding conserved residues in the alignment.

of multiple sequence alignment formats that are in use were discussed
monly encountered examples are the Genetics Computer Group’s
STALW ALN format. Because these formats follow a precise out-
ted to another by computer programs. READSEQ by D.G.
Bloomington is one such program. This program will run
orm and may be obtained by anonymous FTP from
q. There is also a Web-based interface for READSEQ
¢ at http://dot.imgen.bcm.tmc.edu:9331/seq-util/seq-
), which provides C program modules for conversion
gther, is available by anonymous FTP from ftp.pas-
gqio-1.2.tar.gz; documentation is available at
gio/.

at have or exceed the above-listed features
isit the catalog of software page at Web

ents) at http://www.biochem.
functional program for
eatures drag-and-drop
an alignment using
d a number of
d by AW.R.
hat runs

NEMA2.02/kit.h
g'and analysis, including dot m®
ence shifting to left or right, viewing &
the sCreen option, multiple motif selection 4
adg eatures such as viewing of protein structures. G
ayne, D.J. Parry-Smith, A.D. Michie, and T.K. Attwood
inder a Web browser angd efore will run on almost a pater platform.

general interface on UNIX machines for
editing, and display (Smith et al. 1994) and is
ous FTP sites including ftp.ebi.ac.uk/pub/software/unix.
ttp://bimas.dcrt.nih.gov/gde_sw.html, and http://www.tigr.org/
8DE/GDE.html. GDE features are incorporated into the Seqlab interface for
CG software, vers. 9. This interface requires communication with a host UNIX
machine running the Genetics Computer Group software. Interface with MS-DOS or
Macintosh is possible if the computer is equipped with the appropriate X-Windows
client software.

3. GeneDoc is an alignment editing and display editor by K. Nicholas and H. Nicholas of
the Pittsburgh Supercomputing Center for MSF-formatted msas. It can also import files
in other formats. GeneDoc can move residues by inserting or deleting gap, and features
drag-and-drop editing. As the alignment is edited, a new alignment score is calculated
by sum of pairs method or based on a phylogenetic tree. GeneDoc is available from
http://www.psc.edu/biomed/genedoc/ and runs under MS Windows.

4. MACAW is both a local multiple sequence alignment program and a sequence editing
tool (Schuler et al. 1991). Given a set of sequences, the program finds ungapped blocks

in the sequences and gives their statistical significance. Later versions of the program
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Figure 4.20. GeneDoc, a multiple sequence alignment editor with many useful features. Shown is an illustrative multiple
sequence alignment of three DNA repair genes similar to the S. cerevisiae Radl gene. The sequences were aligned with
CLUSTALW, and the FASTA-formatted alignment (Chapter 2) was imported into GeneDoc on a PC.
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; by searching for maximum segment
ored by a scoring matrix such as
BLAST algorithm), by using
ing for user-provided pat-
1on. Executable programs
omputer platforms are avail-
cbi.nlm.nih. macaw.

pairs or com
PAM250 or

ticular format

similar
nymous FTP from
eb server at http://www.ch.emb-
multiple-alignment file in either the Genetics
or CLUSTAL ALN format and can output a file in many
script/EPS and PICT for editing on Macintosh and MS-DOS

shade is a formattlng program by K. Hofmann

STALX is a sequence formatting tool that provides a Windows interface for a
CLUSTALW msa and is available for many computer platforms, including MS-DOS
and Macintosh machines by anonymous FTP from ftp-igbmc.u-strasbg.fr/pub/
ClustalX/ (Thompson et al. 1997).
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THE PREVIQUS TWO CHAPTERS DISCUSS the alignment of protein and nucleic acid sequences.
used either align entire sequences or search for common patterns in the
ither case, the objective is to locate a set of sequence characters in the same
ences. Nucleic acid sequences that specify RNA molecules have to be com-
Sequence variations in RNA sequences maintain base-pairing patterns
puble-stranded regions (secondary structure) in the molecule. Thus,

(@)
©

— === =) ——
—CC -——-)—

—Q

—O0

Figure 5.1. Complementary sequences in RNA molecules maintain RNA secondary structure.
Shown is a simple stem-and-loop structure formed by the RNA strand folding back on itself.
Molecule A depends on the presence of two complementary sequences CGA and UCG that are base-
paired in the structure. In B, two sequence changes, G — A and C — U, which maintain the same
structure, are present. Aligning RNA sequences required locating such regions of sequence covaria-
tion that are capable of maintaining base-pairing in the corresponding structure.

A _ o

organisms become available, it is important to be able to identi-
classes of genes, including the major class of genes that encodes RNA
s. There are a large number of Web sites listed in Table 5.1 that provide programs

Table 5.1. RNA databases and RNA analysis Web sites

Site or resource Web address Reference

58 Ribosomal RNA data bank http://rose.man.poznan.pl/5SData/ Szymanski et al. (1999)
and mirrored at http://userpage.chemie.fu-berlin.
de/fb_chemie/ibc/agerdmann/5S_rRNA.html

5S rRNA database http://www.bchs.uh.edu/~nzhou/temp/5snew.html Shumyatsky and Reddy (1993)

Comparative RNA Web site http://www.rna.icmb.utexas. edu/ see Web site

GenLang linguistic sequence http://www.cbil.upenn.edu/ Dong and Searls (1994)
analyzer

Gobase for mitochondrial http://alice.bch.umontreal.ca/genera/gobase/ Korab-Laskowska et al. (1998)

sequences gobase.html
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Site or resource Web address

Reference

i/ [www.cse.ucsc.edu/research/compbio/
ast_introns.html
p.ebi.ac.uk/pub/databases/plmitrna/

Intron analysis—Saccharomyces
cerevisiae

tRNA genes, higher plant
mitochondria

MFOLD minimum energy RNA
configuration

Nucleic acid database and
structure resource

Pseudobase—pseudoknot
database maintained by E
Batenburg, Leiden Uniwvi

Ribonuclease P database

info.math.rpi.edu/~zukerm/rna/

rver.rutgers.edu/

Ribosomal RNA databa
project (RDP 1II)
Ribosomal RNA mut

databases

a.icmb.utexas.edu

tp://www.rnabase.org/
http://www.imb-jena.de/RNA.html
http://rrna.uia.ac.be/

subunit sequences
Signal recognition partick
database

Small RNA database A/smallrna.html
snoRNA database f

S. cerevisiae
tmRNA? datab ://psyche.uthct.edu/dbs/tmRDB/tmRDB.html

tmRNA® We http://www.indiana.edu/~tmrna/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.uni-bayreuth.de/departments/

biochemie/sprinzl/trna/

u RNA database

Vienna RNA package for RNA
secondary structure prediction
and comparison

Viroid and viroid-like RNA
sequences

http://www.tbi.univie.ac.at/~ivo/RNA/

http://www.callisto.si.usherb.ca/~jpperra

http://psyche.uthct.edu/dbs/TuRNADB/uRNADB.html

Spingola et al. (1999)
Ceci et al. (1999)
Zuker et al. (1991)
Berman et al. (1998)

see Web page

Brown (1999)
Maidak et al. (1999)
Triman and Adams (1997)

Chen et al. (1997)

see Web site

imbach et al. (1994);

nd references therein)

amuelsson and Zwieb (2000)

see Web page
Lowe and Eddy (1999)

Wower and Zwieb (1999)
Williams (1999)

Lowe and Eddy (1997)
Sprinzl et al. (1998)

Zwieb (1997)
Hofacker et al. (1998);
Wuchty et al. (1999)

Lafontaine et al. (1999)

*tmRNA adds a carboxy-terminal peptide tag to the incomplete protein product from a broken mRNA molecule and thereby tar-

gets the protein for proteolysis.

A list of RNA Web sites and databases is available at http://bioinfo.math.rpi.edu/~zukerm/ and at http://pundit.colorado.edu:8080/.
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and guest sjtes for RNA analysis or for access to databases of RNA molecules and
sequences. These molecules perform a variety of important biochemical functions, includ-
ing translafiof; RNA splicing, processing, and editing; and cellular localization. As with
ecifying genes may be identified by using the unknown gene as a query
sequence similarity searches, as described in Chapter 7. If a significant
ce of an RNA molecule of known structure and function is found, then
hould have a similar role. For some small molecules, the amount of

RNA STRUCTURE

icting the most likely regions of base-pairing in an
st given the sequence, thus providing an ab initio
n the many possible choices of complementary
the compatible sets that provide the most
etically stable ructures with energies almost as stable
he most stable and regions whose predictions are the
ost reliable can 0 is. Sequence variations found in re-
lated sequences sed td ¢ pairs are likely to be found in
each of the mg ariatio ediction methods will pre-
dict a set of at are able tO ture. Methods for pre-
dicting threg tal structures fro ¢ also being developed (see

of seconds
es that can

d takes into account con-
of a given class of RNA
same time during
example, if two
gs that have

oridary structure pré
paSe-pairing that are conserved &
ience positions that base-pair are {3
olutj RNA molecules so that structural integri
positi and C form a base pair in a given type of
Ca reversed, or A and U or U and A at the correspd be con-
sigered reasonable matche ariation 1 olecules are a mani-
estati aral prediction. The computational
positions against the background of other

FEATURES € ONDARY STRUCTURE

Like protein secondary structure, RNA secondary structure can be conveniently viewed as
an intermediate step in the formation of a three-dimensional structure. RNA secondary
structure is composed primarily of double-stranded RNA regions formed by folding the
single-stranded molecule back on itself. To produce such double-stranded regions, a run
of bases downstream in the RNA sequence must be complementary to another upstream
run so that Watson—Crick base-pairing between the complementary nucleotides G/C and
A/U (analogous to the G/C and A/T base pairs in DNA) can occur. In addition, however,
G/U wobble pairs may be produced in these double-stranded regions. As in DNA, the G/C
base pairs contribute the greatest energetic stability to the molecule, with A/U base pairs
contributing less stability than G/C, and G/U wobble base pairs contributing the least.
From the RNA structures that have been solved, these base pairs and a number of addi-
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A. Single-stranded RNA B. Double-stranded RNA helix of
stacked base pairs
1 1 5I 3I
5 3
3' | | | | | 5|
C. Stem and loop or hairpin loop. D. Bulge loop
ST T T 1]
3|
5' 3'
3' 5'
. . . 3' 5
E. Interior loop F. Junctions or multi-loops.
5' 3 |
3' 5'

S I I I

5 3

Figure 5.2. Types of single- and double-stranded regions in RNA secondary structures. Single-
stranded RNA molecules fold back on themselves and produce double-stranded helices where com-
plementary sequences are present. A particular base may either not be paired, as in A, or paired with
another base, as in B. The double-stranded regions will most likely form where a series of bases in
the sequence can pair with a complementary set elsewhere in the sequence. The stacking energy of
the base pairs provides increased energetic stability. Combinations of double-stranded and single-
stranded regions produce the types of structures shown in C-F, with the single-stranded regions
destabilizing neighboring double-stranded regions. The loop of the stem and loop in C must gener-
ally be at least four bases long to avoid steric hindrance with base-pairing in the stem part of the
structure. The stem and loop reverses the chemical direction of the RNA molecule. Interior loops,
as in D, form when the bases in a double-stranded region cannot form base pairs, and may be asym-
metric with a different number of base pairs on each side of the loop, as shown in E, or symmetric
with the same number on each side. Junctions, as in F, may include two or more double-stranded
regions converging to form a closed structure. The RNA backbone is red, and both unpaired and
paired bases are blue. The types of loop structures can be represented mathematically, thereby
aiding in the prediction of secondary structure (Sankoff et al. 1983; Zuker and Sankoff 1984).
(Adapted from Burkhard et al. 1999b.)

tional ones (see Burkhard et al. 1999a,b) have been identified. RNA structure predictions
comprise base-paired and non-base-paired regions in various types of loop and junction
arrangements, as shown in Figure 5.2.

In addition to secondary structural interactions in RNA, there are also tertiary interac-
tions, illustrated by the examples in Figure 5.3. These kinds of structures are not pre-
dictable by secondary structure prediction programs. They can be found by careful covari-
ance analysis.
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) I 3

B. C.

Figure 5.3. Examples of known interactions of RNA secondary structural elements. (A) Pseudo-
knot. (B) Kissing hairpins. (C) Hairpin-bulge contact. (Adapted from Burkhard et al. 1999b.)

LIMITATIONS

plifying assumptions are usually made.
etically most stable structure. Second,
is only influenced by local sequence
base pair in a double-stranded
ir and not by the base pairs
ructure. These energies
etic RNA oligonucleotides
to 1988; SantaLucia 1998)
1. 1999). They are most
-U pairs surrounded

region is assum
farther down t
can be reliabl

quence dependen
standard Watson—Crick base

B2 Bn-2
B, Bn.
N Bn

B
B, B, B Bn_‘Bn~2

Figure 5.4. Display of base pairs in an RNA secondary structure by a circle plot. The predicted min-
imum free-energy structure shown in B is represented by a plot of the predicted base pairs as arcs
connecting the bases in the sequence, which is drawn around the circumference of a circle, as shown
in A (see Nussinov and Jacobson 1980). Note that none of the lines cross, a representation that the
structure does not include any knots. (Reprinted from Nussinov and Jacobson 1980.)
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by Watson—Crick pairs. Finally, the structure is assumed to be formed by folding of the
chain back ga itself in a manner that does not produce any knots. The best way of repre-
senting thi uirement is to draw the sequence in a circular form. The paired bases are
then joine cs. If the total structure with all predicted base pairs is to be free of knots,
ust cross (Fig. 5.4). Note, however, that if a pseudoknot (Fig. 5.3) is rep-
diagram, the lines will cross.

N METHODS

predicting RNA secondary structure has been reviewed
al. (1971) first estimated the energy associated with
extrapolation from studies with small molecules and
afigurations of larger molecules were the most ener-
ded the stabilizing energy associated with stacking
d the destabilizing influence of regions that were
gloped computer programs that listed all pos-
podified Watson—Crick base-pairing rules,
ing permutations of compatible heli-
total free energy. Studnicka et al.
anded regions together to pro-
9084) made a list of possible
] ats in proportion to their
equilibrium ¢ ; on [ exp (—AG/RT) ], where
d T is the temperature. The
initial region is chosen at

In the Monte .
method, cal regions, and g

drawing is ma (1978) de51gned

ates a set of p0551ble struc-
account the destabilizing effect of
1ty function is used in more recent applications
ost probable secondary structures (Hofacker et al. 1998;

nd Jacobson (1980) were the first to design a precise and efficient algorithm
edicting secondary structure. The algorithm generates two scoring matrices—one
M(i,7) to keep track of the maximum number of base pairs that can be formed in any inter-
val i to j in the sequence and a second K(i,j) to keep track of the base position k that is
paired with j. From these matrices, a structure with the maximum possible number of base
pairs could be deduced by a trace-back procedure similar to that used in performing
sequence alignments by dynamic programming. Zuker and Stiegler (1981) used the
dynamic programming algorithm and energy rules for producing the most energetically
favorable structure. Their method assumes that the most energetic, and usually longest,
predicted dsRNA regions are present in the molecule. Because many double-stranded
regions are predictable for most RNA sequences, the number of predictions is reduced by
including known biochemical or structural information to indicate which bases should be
paired or not paired, by enforcing topological restraints and by requiring that the structure
be in an energetically stable configuration.
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ritten by Dr. Michael Zuker and colleagues, is commonly used to predict the
ost stable structures of an RNA molecule (Jaeger et al. 1989, 1990; Zuker
OLD provides a set of possible structures within a given energy range and
ication of their reliability. The program also uses covariance information
ally related sequences (Zuker et al. 1991). MFOLD includes methods for
e predicted molecules. This program is one of the most demanding on
hat is currently used because the algorithm is of N’ complexity, where
h. For each doubling of sequence length, the time taken to compute
htfold. The program also requires a large amount of memory for
ns of structure energies in multiple scoring matrices. As a
sed to predict the structure of sequences less than 1000
o0d is most reliable for small molecules and becomes less
1le increases.
useful information on RNA are found at the Web site
info.math.rpi.edu/~zuker/rna/. Details of running
ser manual for MFOLD is widely available (Jaeger
d the partition function method for finding the
tion of an RNA molecule and the most prob-
RNA group (Wuchty et al. 1999) and is

provides
from phy,
graphic

come from the recognition that
g presence of these sequences is
in CUUCGG occurs in dif-
erlcet al. 1988). Databases of
in RNA structure prediction

One advance i
certain RNA seg

ed to predict secondary
ing into account both

zing RNA secondary structure.

METHODS

ARY REGIONS IN RNA SEQUENCES PREDICT SECONDARY

One of the simplest types of analyses that can be performed to find stretches of sequence
in RNA that are self-complementary is a dot matrix sequence comparison for self-comple-
mentary regions. For single-stranded RNA molecules, these repeats represent regions that
can potentially self-hybridize to form RNA double strands (von Heijne 1987; Rice et al.
1991). All types of RNA secondary structure analysis begin by the identification of these
regions, and, once identified, the compatible regions may be used to predict a minimum
free-energy structure. A more advanced type of dot matrix can be used to show the most
energetic parts of the molecule (see Fig. 5.8, below).
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Figure 5.5. Dot matrix analysis of the potato tuber spindle viroid for RNA secondary structure
using the MATRIX function of DNA Strider v. 1.2 on a Macintosh computer.

ary regions in RNA may be fou
ce to be analyzed listed in both the cal axes. In one

orm A/U and G/C base pairs. G/U
is simple type of analysis. As with matching
random matches between the four bases in RNA, and the
o visualize. A long window and a requirement for a large number
in this window are used to filter out these random matches.

example of the RNA secondary structure analysis using a DNA matrix option of
NA Strider is shown in Figure 5.5. An analysis of the potato spindle tuber viroid is shown,
using a window of 15 and a required match of 11. Note the appearance of a diagonal run-
ning from the center of the matrix to the upper left, and a mirror image of this diagonal
running to the lower right. The presence of this diagonal indicates the occurrence of a large
self-complementary sequence such that the entire molecule can potentially fold into a hair-
pin structure. An alternative dot matrix method for finding RNA secondary structure is to
list the given RNA sequence across the top of the page and also down the side of the page
and then to score matches of complementary bases (G/C, A/U, and G /U). Diagonals indi-
cating complementary regions will go from upper right to lower left in this type of matrix.
This is the kind of matrix used to produce an energy matrix (see Fig. 5.8, below).
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MINIMUM FREE-ENERGY METHOD FOR RNA SECONDARY STRUCTURE
PREDICTION

similar to the dot matrix analysis. The sequence is listed across the top
the page, and G/C, A/U, and G/U base pairs are scored (for an exam-
method to find hairpins, see Fig. 5.5). Just as a diagonal in a two-
dicates a range of sequence similarity, a row of matches in the RNA

dding the estimated positive energies of destabilizing
hairpins, bulges within hairpins, internal bulges, and
ive examples of the energy values that are currently
11 the different possible configurations and to find
es of scoring matrices are used. The comple-
rogramming algorithm to predict the most
ilar to the dynamic programming method

in the molecule, the stacking ener-

matrix; matc i matrix. The object is to find a
, and such a row is shown
ses in a row produces a

"6, a match of four ¢
ergy —6.4 kcal/mole. In genera
Inimum energy values obtained b

Predicted free-energy values (kcal/mole at 37° eatures of
ed RNA secondary structures

irs

U/A G/U U/G

—2.3 —1.1 —1.1 —0.8

—2.9 —3.4 —2.3 —2.1 —1.4

. —2.0 —2.9 —1.8 —-1.9 —1.2

—0.9 —-1.7 —2.1 —0.9 —-1.0 —0.5

—0.5 —1.2 —1.4 —0.8 —0.4 —0.2

u/G —1.0 —-1.9 —-2.1 —1.1 —-1.5 —0.4

B. Destabilizing energies for loops

Number of bases 1 5 10 20 30
Internal - 5.3 6.6 7.0 7.4
Bulge 3.9 4.8 5.5 6.3 6.7
Hairpin - 44 53 6.1 6.5

(Upper) Stacking energy in double-stranded region when base pair listed in left column is followed by
base pair listed in top row. C/G followed by U/A is therefore the dinucleotide 5" CU 3’ paired to 5" AG 3'.
(Lower) Destabilizing energies associated with loops. Hairpin loops occur at the end of a double-stranded
region, internal loops are unpaired regions flanked by paired regions, and a bulge loop is a bulge of one
strand in an otherwise paired region (Fig. 5.2). An updated and more detailed list of energy parameters may
be found at the Web site of M. Zuker (http://bioinfo.math.rpi.edu/~zuker/rna/energy/).

From Turner and Sugimoto (1988); Serra and Turner (1995).
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A. Base comparisons B. Free energy calculations
5' A C G u 3 5' A C G u 3'
A A
C C
G G
U u
G C/G U/G G —6.4
C G/C C -5.2
G C/G u/G G -1.8
u AU Cc/J G/U u

3' 3'

Figure 5.6. Evaluation of secondary structure in RNA sequence by the method described in the text.
The sequence is listed down the first column of A and B in the 5’ — 3’ orientation, and the first four
bases of the sequence are also listed in the first row of the tables in the 5’ — 3’ direction. Several
complementary base pairs between the first and last four bases that could lead to secondary struc-
ture are shown in A. The most 5" base is listed first in each pair. The diagonal set of base pairs A/U,
C/G, G/C, and U/G reveals the presence of a potential double-stranded region between the first and
last four bases. The free energy associated with such a row of base pairs is shown in B. A C/G base
pair following an A/U base pair has a base stacking energy of —1.8 kcal/mole (Turner and Sugimo-
to 1988). This value is placed in the corresponding position in B. Similarly, a C/G base pair followed
by a G/C provides energy of —3.4, and a G/C followed by a U/G, —1.2 kcal/mole. Hence, the ener-
gy accumulated after stacking of these additional two base pairs is —5.2 and —6.4. The energy of this
double-stranded structure will continue to decrease (become more stable) as more base pairs are
added, but will be increased if the structure is interrupted by noncomplementary base pairs.

airs or increased
ementary bases. The increase
introduced by the noncomplementary base
oop, or hairpin loop, as shown in Table 5.2. This com-
atches and energy values is continued until all nucleotides have
. The pattern followed in comparing bases within the RNA molecule is
in Figure 5.7.

eased by the stacking ener

SUBOPTIMAL STRUCTURE PREDICTIONS BY MFOLD AND THE USE
OF ENERGY PLOTS

Originally, the FOLD program of M. Zuker predicted only one structure having the mini-
mum free energy. However, changes in a single nucleotide can result in drastic changes in the
predicted structure. A later version, called MFOLD, has improved prediction of non-base-
paired interactions and predicts several structures having energies close to the minimum free
energy. These predictions accurately reflect structures of related RNA molecules derived from
comparative sequence analysis (Jaeger et al. 1989; Zuker 1989, 1994; Zuker et al. 1991; Zuker
and Jacobson 1995). To find these suboptimal structures, the dynamic programming method
was modified (Zuker 1989, 1991) to evaluate parts of a new scoring matrix in which the
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Figure 5.7. Method used in dynamic programming analysis for identifying the most energetically
favorable configuration of a linear RNA molecule. (A) The sequence of an RNA molecule of length
n bases is listed across the top of the page and down the side. The index of the sequence across the
top is j and that down the side is i. The search only includes the upper right part of the matrix shown
in gray and begins at the first diagonal line for matching base pairs. First positions i =1 and j =2
are compared for potential base-pairing, and if pairing can occur, an energy value is placed in an
energy matrix W at position 1,2. Then, i = 2 and j = 3 base are compared, and so on, until all base
combinations along the dashed diagonal have been made. Then, comparisons are made along the
next upper right diagonal. As each pair of bases is compared, an energy calculation is made that is
the optimal one up to that point in the comparison. In the simplest case, if i +1 pairs with j —1, and
i pairs with j, and if this structure is the most favorable up to that point, the energy of the i/j base
pair will be added to that of the i +1/j —1 base pair. Other cases are illustrated in B. The process of
obtaining the most stable energy value at each matrix position is repeated following the direction of
the arrows until the last position, i =1 and j =#, has been compared and the energy value placed at
this position in matrix W, the value entered in W(1,1), will be the energy of the most energetically
stable structure. The structure is then found by a trace-back procedure through the matrices simi-
lar to that used for sequence alignments. The method used is a combination of a search for all pos-
sible double-stranded regions and an energy calculation based on energy values similar to those in
Table 5.2. The search for the most energetic structure uses an algorithm (Zuker and Stiegler 1981)
similar to that for finding the structure with maximum base-pairing (Nussinov and Jacobson 1980).
These authors recognized that there are three possible ways, illustrated here by the colored arrows,
of choosing the best energy value at position i,j in an energy matrix W. The simplest calculation (red
arrow) is to use the energy value found up to position i—1, j—1 diagonally below i,j. If 7 and j can
form a base pair (and if there are at least four bases between them in order to allow enough sequence
for a hairpin) and i+1 and j—1 also pair, then the stacking energy of i/j upon i+1/j—1 will reduce
the energy value at i+ 1, j— 1, producing a more stable structure, and the new value can be consid-
ered a candidate for the energy value entered at position 7,j. If i and j do not pair, then another
choice for the energy at i,j is to use the values at positions i, j—1 or i+1, j illustrated by the blue
arrows. i and j then become parts of loop structures. Finally, i and j may each be paired with two
other bases, i with k and j with k+1, where k is between i and j (i < k < j), illustrated by the struc-
ture shown in yellow and green, reflecting the location of the paired bases. The minimum free-ener-
gy value for all values of k must be considered to locate the best choice as a candidate value at i,;.
Finally, of the three possible choices for the minimum free-energy value at i,j indicated by the four
colored arrows, the best energy value is placed at position W(i,j). The procedure is repeated for all
values of 7 and j, as illustrated in A. Besides the main energy scoring matrix W, additional scoring
matrices are used to keep track of auxiliary information such as the best energy up to 1,j where i and
j form a pair, and the influence of bulge loops, interior loops, and other destabilizing energies. An
essential second matrix is V(i,j), which keeps track of all substructures in the interval 4,j in which i
forms a base pair with j. Some values in the W matrix are derived from values in the V matrix and
vice versa (Zuker and Stiegler 1981).
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sequence is represented in two tandem copies on both the vertical and horizontal axes. The
regions fromih =1 to n and j =1 to n are used to calculate an energy V(3,j) for the best struc-
es an i,j base pair and is called the included region. A second region, the
is used to calculate the energy of the best structure that includes 7,j but is not

ced showing the locations of alternative base pairs that pro-
imally stable structures, as illustrated in Figure 5.8. The pro-

measure of similarity between two structures. When
le local host machine, the window is interactive, and
d to program output of the corresponding structure.
ly suboptimal regions with helices of a certain min-
icted structures is shown in Figure 5.9.

Reliability of Secondary Structure Prediction

Three scores, Pnum (i), Hnum (i,j), and Ssum, have been derived to assist with a
determination of the reliability of a secondary structure prediction for a particular
base i or a base pair 7,j. Pnum(i) is the total number of energy dots regardless of color
in the ith row and ith column of the energy dot plot, and represents in an unfiltered
dot plot the number of base pairs that the ith base can form with all other base pairs
in structures within the defined energy range. The lower this value, the more well
defined or “well determined” the local structure because there are few competitive
foldings. Hnum(i,5) is the sum of Pnum(7) and Pnum(j) less 1 and is the total num-
ber of dots in the ith row and jth column and represents the total number of base
pairs with the ith or jth base in the predicted structures. The Hnum for a double-
stranded region is the average Hnum value for the base pairs in that helix. The lower
this number, the more well determined the double-stranded region. In an analysis of
tRNAs, 5S RNAs, ribosomal RNAs, and other published secondary structure models
based on sequence variation (Jaeger et al. 1990; Zuker and Jacobson 1995), these
methods correctly predict about 70% of the double-stranded regions. Snum, also
called ss-count, is the number of foldings in which base i is single-stranded divided
by m, the number of foldings, and gives the probability that base i is single-stranded.
If Snum is approximately 1, then base 7 is probably in a single-stranded region, and if
Snum is approximately 0, then base 7 is probably not in such a region. This reliabili-
ty information has been used to annotate output files of MFOLD and other RNA dis-
play programs (Zuker and Jacobsen 1998). Plots of these values against sequence
position are given by the MFOLD program and the Zuker Web site.

OTHER ALGORITHMS FOR SUBOPTIMAL FOLDING OF RNA MOLECULES

A limitation of the Zuker method and other methods (Nakaya et al. 1995) for computing
suboptimal RNA structures is that they do not compute all the structures within a given
energy range of the minimum free-energy structure. For example, no alternative structures



218 = CHAPTER 5

g
108

Fr

|!" . —dan

=" | W

F i | LT
o II

Bplims| swergy: -0
Rasspmirs Plediied- PrlY

Figure 5.8. The energy dot plot (boxplot) of alternative choices of base pairs of an RNA molecule (Jacobson and Zuker
1993). The sequence is that of a human adenovirus pre-terminal protein (GenBank U52533) that is given by M. Zuker as an
example on his Web site at http://bioinfo.math.rpi.edu/~zukerm. Foldings were computed using the default parameters of
the MFOLD program at http://bioinfo.math.edu/~mfold/rna/form1.cgi (Mathews et al. 1999) using the thermodynamic val-
ues of SantaLucia (1998). The minimum energy of the molecule is —280.6 kcal/mole and the maximum energy increment is
12 kcal/mole. Black dots indicate base pairs in the minimum free-energy structure and are shown both above and the mirror
image below the main diagonal. Red, blue, and yellow dots are base pairs in foldings of increasing 4, 8, and 12 kcal/mole ener-
gies greater than the minimum energy, respectively. A region with very few alternative base pairs such as the pairing of
370-395 with 530-505 is considered to be strongly predictive, whereas regions with many alternative base pairs such as the
base-pairing in the region of 340-370 with 570-530 are much less predictive.
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are produced that have the absence of base pairs in the best structure, and, if two sub-
structures @ke joined by a stretch of unpaired bases, no structures are produced that are
r both structures. These factors limit the number of alternative structures
ared to known variations based on sequence variations in tRNAs (Wuchty

s have been largely overcome by using an algorithm originally described
yers (1985) for finding sequence alignments within a certain range of
odifications of the trace-back procedure used in dynamic program-
ciengly calculates a large number of alternative structures, up to a
iven energy range of the minimum free-energy structure (see
en used to demonstrate that natural tRNA sequences can
s which are close to the minimum free-energy structure
a major role in this energetic stability (Wuchty et al.
d to assess the thermodynamic stability of RNA struc-
ies associated with base pairs and loops as a function
tructure prediction and comparison Web site at
ill fold molecules of length > 300 bases, and the
er molecules on a local machine is available

deice a seconda
ons and destabilizing energ ith loops are summed to
ture. A different way

ion, which

The Boltzmann con- ex gt and T is the absolute tempera-
stant k is 8.314510

J/mole/degree K.

gcture, the lower the value of AG. Since AG is a negative
p(—AGJ/KT) increases for more stable structures and also grows
a decrease in energy. The probability of these regions forming increas-
*same manner. Conversely, the effect of destabilizing loops that have a positive AG
to decrease the probability of formation. By using these probability calculations and a
dynamic programming method similar to that used in MFOLD, it is possible to predict the
most probable RNA secondary structures and to assess the probability of the base pairs that
contribute energetic stability to this structure.

For a set of possible structural states, the likelihood of each may be calculated using this
formula, and the sum of these likelihoods provides a partition function that can be used to
normalize each individual likelihood, providing a probability that each will occur. Thus,
probability of structure A of energy —AG, is [ exp (—AG,/kT) ] divided by the partition
function Q, where Q = X [ exp (—AG/KT) |, the sum of probabilities of all possible struc-
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Figure 5.9. Model of RNA secondary structure of the human adenovirus pre-terminal protein. This model is one of several
alternative structures represented by the above energy plot and provided as an output by the current versions of MFOLD. (A)
Simple text representation of one of the predicted structures. Each stem-and-loop structure is shown separately and the left end
of each structure is placed below the point of connection to the one above. (B) More detailed rendition of one part of the pre-
dicted structures. The structure continues beyond the right side of the page.
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tures, s. This kind of analysis allows one to calculate the probability of a certain base pair
forming.
The key
grammin
has bee

this analysis is the calculation of the partition function Q. A dynamic pro-
ithm for calculating this function exactly for RNA secondary structure
ed (McCaskill 1990). The algorithm is very similar to that used for com-
puting L folding by MFOLD. Complexity similarly increases as the cube of the
seque d the energy values used for base pairs and loops are also the same
excep s with very large interior loops are ignored. Just as the minimum
free en @ W(1,n) in the Zuker MFOLD algorithm, the value of the
par, § gliciat matrix position Q(1,n) in the corresponding partition
m

Pove, th
condary
ulation is
probabiliti
includes bg
ample illusty

on function is calculated as the sum of the probabilities of
Because there are a very large possible number of struc-
calculating an auxiliary function, Q°(i,f), which is the
es that include the base pair 7,j. The partition func-
and the additional ones where i is not paired with
een the minimum free energy and the parti-
¥ function meth ppose that the bases at positions i +1,7 —1
d i,j can both fo, tack of two base pairs. In the minimum
free-energy met 0 on the i +1, j —1 pair will be added
toV(i+1,7—1 here at keeps track of the best struc-
ture that incl e pair. In 8 (0°(i,j) will be calculated by
multiplying ue Q°(i +1,j the base pair 7,j given by
the Boltzma ligelexp (— AG/KT e negative stacking energy of
pase pair, and number reflecting the prob-
ot the base-paired regio
structure with a row of successive

oe e Boltzmann factors associated with tI¥
for th ative likelihood of formation. The procedur@
algdfiPiim is to calculate Q°(i,j) and Q(ij) iteratively i
ill@Strated in Figure 5.7A until Q(1,n) is reached. This ma

obability will be the
ag a high number
ition function
ar to that
ontains the value

O
dabilities of all base pairs are computed by this
PIC structural model is thereby found. Information about
, base-pair opening and slippage, and the temperature dependence
on function may also be determined. The latter calculation provides informa-
about the melting behavior of the secondary structure.
A suite of RNA-folding programs available from the Vienna RNA secondary structure
prediction Web site (http://www.tbi.univie.ac.at/~ivo/RNA/) uses this methodology to
predict the most probable and alternative RNA secondary structures. An example of the
folding of a 300-base RNA molecule is given in Figure 5.10. The probability of forming
each base pair is shown in a dot matrix display in which the dots are squares of increasing
size reflecting the probability of the base pair formed by the bases in the horizontal and ver-
tical positions of the matrix. Secondary structure prediction is done by two kinds of
dynamic programming algorithms: the minimum free-energy algorithm of Zuker and
Stiegler (1981) and the partition function algorithm of McCaskill (1990).
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CRCGGUUCCAGAKGUUGCGCAGCGGCAAAAAGUGCUCCAUGGUCGGGACGCUCUGGCCGGUC
AGGCGCGCGCAGUCGUUGACGCUCUAGACCGUGCAARAAGGAGAGCCUGUAAGCGGGCACUCU
UCCGUGGUCUGGUGGAUAAAUUCGCAAGGGUAUCAUGGCGGACGACCGGGGUUCGAACCCCG
GAUCCGGCCGUCCGCCGUGAUCCAUGCGGUUACCGCCCGCGUGUCGAACCCAGGUGUGCGAC
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Figure 5.10. Suboptimal foldings of an RNA sequence using probability distributions of base-pairings. The first 300 bases of
the same adenovirus sequence used in Fig. 5.8 was submitted to the Vienna Web server. (A) The region shown represents struc-
tures within the range of bases 150—300 and may be compared to the same region in Fig. 5.8. The minimum free energy of this
thermodynamic ensemble is —134.85 kcal/mole, compared to a minimum free energy of 125.46 kcal/mole. The size of the
square box at highlighted matrix positions indicates the probability of the base pair and decreases in steps of 10-fold; i.e., order
of magnitude decreases. The size variations shown in the diagram cover a range of ~4-6 orders of magnitude. Calculations of
base-pair probabilities are discussed in the text. (B) The minimum free-energy structure representing base pairs as pairs of nest-
ed parentheses. A low-resolution picture was also produced (not shown).
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USING SEQUENCE COVARIATION TO PREDICT STRUCTURE

tions (Wi al. 1983) and also tertiary structure analyses such as those shown in Figure
. 1986) is RNA sequence covariation analysis. This method examines

lace in evolution should maintain the base-pairing. On the
in loops and single-stranded regions should not have such a
ysis is to look for sequence positions at which covariation
erties. The justification for this method is that these types
ns actually are found to occur during evolution of such
n one position corresponding to a base pair is changed,
e base-pairing partner will also change. For example,
ir, then sequences that have C and G reversed, or
ositions, would also be considered reasonable
d to improve thermodynamic structure pre-
acker et al. 1998). An example of using
s in tRNA is shown in Figure 5.12.
hich phylogenetic groups exhibit
enerally predominates in one
required manual examina-
methods have also been
(Winker et al. 1990; Han and

uctures for co

l. Sequence alignment

seql. ———G————— C——-—
seq2. ———C————— G———
seq3. ———A-————— C——-—
seq4. ———A—-————— T——-

Il. Structural alignment

A B C D

GC CG AC AU

Figure 5.11. Conservation of base pairs in homologous RNA molecules influences structure pre-
diction. The predicted structure takes into account sequence covariation found at aligned sequence
positions, and may also use information about conserved positions in components of a phylogenetic
tree. In the example shown, sequence covariations in A, B, and D found in sequences 1, 2, and 4,
respectively, permit Watson—Crick base and G-U base-pairing in the corresponding structure, but
variation C found in sequence 3 is not compatible. Sometimes correlations will be found that sug-
gest other types of base interactions, or the occurrence of a common gap in a multiple sequence
alignment may be considered a match. Positions with greater covariation are given greater weight
in structure prediction. Molecules with only one of the two sequence changes necessary for conser-
vation of the base-paired position may be functionally deleterious.
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Figure 5.12. Covariation found in tRNA sequences reveals base interactions in tRNA secondary and tertiary structure. (A)
Alignment of tRNA sequences showing regions of interacting base pairs. (+) Transition; (—) transversions; (|) deletion; (*)
ambiguous nucleotide. (B) Diagram of tRNA structure illustrating base—base interactions revealed by a covariance analysis.
Adapted from the Web site of R. Gutell at http://www.rna.icmb.utexas.edu.
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Methods of Covariation Analysis in RNA Sequences

Secondary and tertiary features of RNA structure may be determined by analyzing a
group of related sequences for covariation. Two sequence positions that covary in a
manner that frequently maintains base-pairing between them provides evidence that
the bases interact in the structure. Combinations of the following methods have been
used to locate such covarying sites in RNA sequences (see R. Gutell for additional
details and at http://www.rna.icmb.utexas.edu/METHODS/menu.html).

1. Optimally align pairs of sequence to locate conserved primary sequence, mark
transitions and transversions from a reference sequence, and then visually
examine these changes to identify complementary patterns that represent
potential secondary structure.

2. Perform a multiple sequence alignment, highlight differences using one of the
sequences as a reference, and visually examine for complementary patterns.

3. Mark variable columns in the multiple sequence alignment by numbers that
mark changes (e.g., transitions or transversions) from a reference sequence;
examine marked columns for a similar or identical number pattern that can
represent potential secondary structure.

4. Perform a statistical analysis (Chi-square test) of the number of observations of
a particular base pair in columns 7 and j of the multiple sequence alignment,
compared to the expected number based on the frequencies of the two bases.

5. Calculate the mutual information score (mixy) for each pair of columns in the
alignment, as described in the text and illustrated in Figure 5.13.

6. Score the number of changes in each pair of columns in the alignment divided
by the total number of changes (the ec score), examine the phylogenetic context
of these changes to determine the number of times the changes have occurred
during evolution, and choose the highest scores that are representative of mul-
tiple changes.

7. Measure the covariance of each pair of positions in the alignment by counting
the numbers of all 16 possible base-pair combinations and dividing by the
expected number of each combination (number of sequence X frequency of
base in first position X frequency of base in second position), choose the most
prevalent pair, and examine remaining combinations for additional covaria-
tion; then sum frequency of all independently covarying sites to obtain covary
score.

Mutual Information Content

A method used to locate covariant positions in a multiple sequence alignment is the
mutual information content of two columns. First, for each column in the alignment,
the frequency of each base is calculated. Thus, the frequencies in column m, f,,(B;),
are f,,(A), fu(U), fu(G), and f,,(C) and those for column #, f,(B,), are f,(A), f,(U),
fa(G), and f,,(C). Second, the 16 joint frequencies of two nucleotides, f,, ,(B1,B,) one
base B; in column m and the same or another base B, in column # are calculated. If
the base frequencies in any two columns are independent of each other, then the
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ratio of f,, ,(B1,B2) I [fu(B1) X fu(B,)] is expected to equal 1, and if the frequencies
are correlated, then this ratio will be greater than 1. If they are perfectly covariant,
then f,,, ,(B1,B2) = f.(B1) = fu(B,). To calculate the mutual information content H
(m,n) in bits between the two columns m and n, the logarithm of this ratio is calcu-
lated and summed over all possible 16 base-pair combinations.

H (m,n) = ZBI,Bme,n(BI:BZ) X 10g2 {fm,n(BlaBz) / [fm(Bl)fn(BZ)]}

H (m,n) varies from the value of 0 bits of mutual information representing no corre-
lation to that of 2 bits of mutual information, representing perfect correlation (Eddy
and Durbin 1994).

t may be plotted on a motif logo (Gorodkin et al. 1997),
r 4, page 196, for illustrating a sequence motif. The
the mutual information content M superimposed on
e position in an RNA alignment.

EE o e Gk

=i i

popE e e £ SRS 593

Figure 5.13. RNA structure logo. The top panel is the normal sequence logo showing the size of each
base in proportion to the contribution of that base to the amount of information in that column of
the multiple sequence alignment. The relative entropy method is used in which the frequency of bases
in each column is compared to the background frequency of each base. Inverted sequence characters
indicate a less than background frequency (see Chapter 4, page 196). The bottom panel includes the
same information plus the mutual information content in pairs of columns. The amount of informa-
tion is indicated by the letter M, and the matching columns are shown by nested sets of brackets and
parentheses. All sequences have a C in column 1 and a matching G in column 16. Similar columns 2
and 15 can form a second base pair stacked upon the first. Columns 7—-10 and 25-22 also can form G/C
base pairs most of the time. Sequences with a G in column 7 frequently have a C in column 25, and
those with a C in column 7 may have a G in column 25. Thus, there is mutual information in these
two columns (Gorodkin et al. 1997 [using data of Tuerk and Gold 1990]).
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A formal coyariance model has been devised by Eddy and Durbin (1994). Although very
accurate whemused for identifying tRNA genes, the algorithm is extremely slow and
unsuitable f arching through large genomes. Instead, the method has been used to
screen thro tative tRNA genes previously identified by faster methods (Lowe and
Eddy 1997 ifficulty that is faced in modeling RNA molecules is to identify the
potential in a set of related RNA molecules based on covariation at two sites.
that the hidden Markov model is used for capturing the types of
sequence profile, including matches, mismatches, insertions, and
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Figure 5.14. Tree model of RNA secondary structure. The model in A is represented by the ordered
binary tree shown in B. This model attempts to capture both the sequence and the secondary struc-
ture of the RNA molecule. The tree is read like a sequence starting at the root node at the top of the
model, then moving down the main branch to the bifurcation mode. Along the main trunk are nodes
that represent matched or unmatched base pairs. Shown are two A’s matching a “-,” indicating no
pairing with these bases. After the bifurcation mode, one then moves down the most leftward branch
to the end node. Along the branch are unmatched bases, matched base pairs, and mismatched pairs.
After the end node is reached, go back to the previous bifurcation node and follow the right branch.
(Reprinted, with permission of Oxford University Press, from Eddy and Durbin 1994.)
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and then haying the model reveal the most likely base-paired regions. The approach is sim-
g a hidden Markov model for proteins to recognize a family of protein
eby producing the most probable multiple sequence alignment. In the case
ry structure, a tree model is trained by the sequences, and the model may
edict the most probable secondary structure. In addition, the model may
rch a database for sequences that produce a high score when aligned to
quences are likely to encode a similar type of RNA molecule such as
h model is derived by training a more general tree model with the

ds to represent the types of variations that are found in align-
s, such as insertions, deletions, and mismatches. To allow
the tree is replaced by a set of states that correspond to all
s that might be encountered at that position. These states

of all sequence positions is used in designing the
ion method (Chapter 4) is used to optimize the
gramming method is used to find a model that
ructure of the model may subsequently be
el suitable for an RNA molecule has been
stablished, the m he methodology is similar to that of
hidden Markov fesc apter 4. Basically, the model is ini-
tialized by givi fles to the de frequencies in each MATCH
and INS state ansition prob aths through the model are
found for eag the training se and transition probabilities are
odi 11 i'he base pairs are found from
ble dinucleotides.
ach sequence provides a
mming algorithm is
ance model. The
ilar method

probabilities
been trained, the most pr@
tural alignment of the sequences.
atches subsequence alignments to the
resu og odds score of the sequence matching the
maf b€ used to find sequences in a genomic database ¥ es to the
cgvariance model. The method was used to predict the str ent of representa-

ets of fat closely matched actual struc-
e software for the COVELS program is avail-
ddy and Durbin 1994).

ed

STOCHAS] -FREE GRAMMARS FOR MODELING
RNA SECONE TRUCTURE

In the above section, we discussed the need to have models for RNA secondary structure
that reflect the interaction among base pairs. Simpler models of sequence variation treat
sequences as simple strings of characters without such interactions and are therefore not
suitable for RNA. A general theory for modeling strings of symbols, such as bases in DNA
sequences, has been developed by linguists. There is a hierarchy of these so-called trans-
formational grammars that deal with situations of increasing complexity. The application
of these grammars to sequence analysis has been extensively discussed elsewhere (Durbin
et al. 1998). The context-free grammar is suitable for finding groups of symbols in differ-
ent parts of the input sequence that thus are not in the same context. Complementary
regions in sequences, such as those in RNA that will form secondary structures, are an
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Root node

Left singlet node

Right singlet node

Left branch
begin node

Figure 5.15. Details of tree model for RNA secondary structure. Each type of node in the tree shown
in Fig. 5.14 is replaced by a pattern of states corresponding to the types of sequence variations that are
expected in a family of related RNA sequences. These states each store a table of frequencies of 4 bases
or of 16 possible dinucleotides. The seven different types of nodes are illustrated. BEG node includes
insert states for sequence of any length on the right or left side of the node. The pair-wise node
includes a state MATP for storing the 16 possible dinucleotide frequencies; MATL and MATR states
for storing single base frequencies on either the left or right side of the node, respectively; a DEL state
for allowing deletions; and INSL and INSR states that allow for insertions of any length on the left or
right of the node. DEL does not store information. The other five node types have the same types of
states. Each state is joined to other states by a set of transition probabilities shown by the arrows.
These probabilities are similar to those used in hidden Markov models. BIF is a bifurcation state with
transition probabilities entering the state from above and then leaving to one or the other of two
branches. (Reprinted, with permission of Oxford University Press, from Eddy and Durbin 1994.)

example of such context-free sequences. Stochastic context-free grammars (SCFG) intro-
duce uncertainty into the definition of such regions, allowing them to use alternative sym-
bols as found in the evolution of RNA molecules. Thus, SCFGs can help define both the
types of base interactions in specific classes of RNA molecules and the sequence variations
at those positions. SCFGs have been used to model tRNA secondary structure (Sakakibara
et al. 1994). Although SCFGs are computationally complex (Durbin et al. 1998), they are
likely to play an important future role in identifying specific types of RNA molecules.
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The application of SCFGs to RNA secondary structure analysis is very similar in form to
the probabili§tic covariance models described in the above section. For RNA, the symbols
are A, C, G, and U. The context-free grammar establishes a set of rules
ns for generating the sequence from the alphabet, in this case an RNA
tions that can base-pair and others that cannot base-pair. In addition to
ols (named terminal symbols because they end up in the sequence),
Is (nonterminal symbols) designated Sy, Sy, S, . . . , determines inter-
ges. The initial symbol is Sy by convention. The next terminal sym-
g Sp in some fashion by productions indicated by an arrow.
50 — S1,S1 = CS, G generate the sequence C S, G where S,
ditional productions. The example shown in Figure 5.16
ows a set of productions for generating the sequence
d also the secondary structure of this molecule. The
patures.
ammar, only one sequence is produced at each pro-
of a nonterminal symbol has an associated prob-
ict, and there are a set of productions, each giv-
tion S; -» C S, G could also be represented
these has a corresponding probability.
esented by a probability distribution
G representatlon of the predicted

pvariance model in Figure 5.14.
is is in fact very similar to
esembling the nodes in
he probability distribution of
gnces. The algorithms used
hare somewhat different
requirements are

methods to identify sequences in genomes
*Larger, highly conserved molecules can simply be iden-
uence similarity with already-known sequences. For smaller
ore sequence variation, this method does not work. A number of meth-
nding small RNA genes have been described and are available on the Web (Table
.1). A major problem with these methods in searches of large genomes is that a small false-
positive rate becomes quite unacceptable because there are so many false positives to check
out.

One of the first methods used to find tRNA genes was to search for sequences that are self-
complementary and can fold into a hairpin like the three found in tRNAs (Staden 1980).

L.
-

Figure 5.16. A set of transformation rules for generating an RNA sequence and the secondary structure
of the sequence from the RNA alphabet (ACGU). (A) The set of production rules for producing the
sequence and the secondary structure. These rules reveal which bases are paired and which are not paired.
(B) Derivation of the sequence. (C) A parse tree showing another method for displaying the derivation
of the sequence in B. (D) Secondary structure from applying the rules. (Redrawn, with permission of
Oxford University Press, from Sakakibara et al. 1994.)



A. Productions

P={S,— S, S, — G S,
S;— CS,G, Sy — G,
S,— AS;U, Sg — AS;uU,
Sz = Sy Sy, Sio > GS11 G,
Sy — US; A, Sy —=> AS;p U,
Ss—= CSgG,  Syp— USys,
Se — AS7, Si3—> C }

B. Derivation

Sy — Sy — CS,G — CAS3UG —= CAS,SgUG
CAUS;ASqUG —> CAUCS,GASoUG
CAUCAS,;GASgUG —= CAUCAGSgGASUG
CAUCAGGGAS UG — CAUCAGGGAAS,(,UUG
CAUCAGGGAAGS,CUUG
CAUCAGGGAAGAS;,UCUUG
CAUCAGGGAAGAUS, ;UCUUG
CAUCAGGGAAGAUCUCUUG.
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D. Secondary structure
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APPLICATIE

CHAPTER 5

@® s ©® @

(1)
(2)
Guide sequence [-»! Box D' ‘—»‘—»-

D o
@ ®

Figure 5.17. Probabilistic model of snoRNAs. The numbered boxes and ovals represent conserved
sequence and structural features that have been modeled by training on snoRNAs. Secondary struc-
tural features of Stem were modeled with an SCFG. Boxes with ungapped hidden Markov models, the
guide sequence with a hidden Markov model, and gapped regions (spacers) are shown by ovals. The
guide sequence interacts with methylation sites on rRNA and is targeted in each search to a comple-
mentary sequence near one of those sites. The alignment of this model produces a log odds score that
provides an indication of the reliability of the match. The transition probabilities are 1, except where
the model bifurcates to allow identification of two types of target sequences. The model is highly spe-
cific and seldom identifies incorrect matches in random sequences. (Reprinted, with permission, from
Lowe and Eddy 1999 [copyright AAAS, Washington, D.C.].)

t and Burks ( RNAscan, that searches a genomic sequence
Ph a sliding wind or matches to a set of invariant bases and
onserved self-co 4 h an accuracy of 97.5%. Pavesi et al.
(1994) derived a fing ¥ 2 [1] transcriptional control regions
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accurate. Fina ddy (1997)¥ gorithm tRNAscan-SE that
uses a combi e methods to find seriomic sequences—tRNAscan,

P CC PEOPTd equence covariance analysis

od is reporte accurate with an extremely

ves.

stic model shown in Figure 5.17 wa!

VAs j yeast genome that methylate ribosomal R
geno cquences directly. Instead, a list of candidate
ing #@Ppatterns that match the sequences in the model (I8 he prob-
ability model was a hybrid combination of HMMs and SCF& 3d"011 snoRNAs. These
RN As at they are not found by straight-
d were shown to be snoRNAs by insertional

mall nucleolar (sno)
pt used to search
d by search-

RUCTURE MODELING

In summary, methods for predicting the structure of RNA molecules include (1) an anal-
ysis of all possible combinations of potential double-stranded regions by energy mini-
mization methods and (2) identification of base covariation that maintains secondary and
tertiary structure of an RNA molecule during evolution. Energy minimization methods
have been so well refined that a series of energetically feasible models and the most ther-
modynamically probable structural models may be computed. Covariation analysis by C.
Woese led to his building of detailed structural models for rRNAs. By examining the evo-
lutionary variation in these structures, he was able to predict three domains of life—the
Bacteria, the Eukarya, and a newly identified Archaea. Although a large amount of hori-
zontal transfer among evolutionary lineages of other genes has added a great deal of noise
to the evolutionary signal, the rRNA-based prediction is supported by other types of



PREDICTION OF RNA SECONDARY STRUCTURE = 233

genomic analyses. In addition to these uses of rRNA structural analysis, excellent proba-
bilistic model§hof two small RNA molecules, tRNA and snoRNA, have been built, and these
models may, sed to search reliably through genomic sequences for genes that encode
these RNA ules. The successful analysis of these types of RNA molecules should be
readily ex o other classes of RNA molecules.
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INTRODUCTION

ANALYSIS OF A FAMILY of related nucleic acid or protein sequences is a
ow the family might have been derived during evolution. The evolu-
among the sequences are depicted by placing the sequences as outer
e branching relationships on the inner part of the tree then reflect
rent sequences are related. Two sequences that are very much alike
in@ outside branches and will be joined to a common branch
logenetic analysis is to discover all of the branching rela-
nch lengths.

acid and protein sequences is presently and will contin-
ce analysis. In addition to analyzing changes that have
prganisms, the evolution of a family of sequences may
sequences that are the most closely related can be
branches on a tree. When a gene family is found
genetic relationships among the genes can help
unction. These functional predictions can
analysis may also be used to follow the
as a virus. Analysis of the types of
ether or not a particular gene is
under selection d Kreltman 1998; Nielsen and
Yang 1998), a
Procedure

ose for sequence alignment
ountered. Just as two very

difficult S
ittle or no cost. A comprehensive
published previously (Swofford et al. 1996).
(phylogenetic inference package) (Felsenstein 1989
r. J. Felsenstein at http://evolution.genetics.washington.edu/
PAUP (phylogenetic analysis using parsimony) available from Sinauer
es, Sunderland, Massachusetts, http://www.lms.si.edu/PAUP/. Current versions of
ese programs provide the three main methods for phylogenetic analysis—parsimony,
distance, and maximum likelihood methods (described below)—and also include many
types of evolutionary models for sequence variation. Examples using these programs are
given later in the chapter. Each program requires a particular type of input sequence for-
mat that is described below and in Chapter 2. Another program, MacClade, is useful for
detailed analysis of the predictions made by PHYLIP, PAUP, and other phylogenetic pro-
grams and is also available from Sinauer (also see http://phylogeny.arizona.edu/macclade/
macclade.html). MacClade, as the name suggests, runs on a Macintosh computer. PHYLIP
and PAUP run on practically any machine, but the user interface for PAUP has been most
developed for use on the Macintosh computer.

There are also several Web sites that provide information on phylogenetic relationships
among organisms (Table 6.1). There are several excellent descriptions of phylogenetic
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Table 6.1. Phylogenetic relationships among organisms

Site name Description Reference
Entrez .nih.gov/ taxonomically related structures see Web page
or group of organisms
RDP (Ribosomal  http://www. ribosomal RNA-derived trees Maidak et al. (1999)
database project)
Tree of life information about phylogeny and Maddison and
biodiversity Maddison (1992)
are covered in considerable depth (Li and Graur 1991;
Isenstein 1996; Li and Gu 1996; Saitou 1996; Swofford et
RELATIONSHI TO SEQUENCE ALIGNMENT

ein molecules found in two different organ-
s are similar, ived from a common ancestor sequence.
Chapter 3 discug 0 ed to determine sequence similarity.

Chapter 4 disc equer ds that need to be applied to a set
of related seq 2 phyloge erformed. Chapter 7 describes
methods for § ough a databa e sequences that are simi-

lar to a que . A sequence alig vhich positions in the sequences

BT a CQ or sequence, as illustrated in
¢ certain that two g an evolutionary relation-
are referred to as being homo
onest method of multiple sequence
52) first aligns the most closely related p
ore distantly related sequences or sets of seq@
art, p. 144). The alignment so obtained is influenct Buences in
¢ group and thus may notrepresen eliable history o volutionary changes that
alignment attempt to circumvent the
4, p. 157). Once a multiple sequence alignment
1s assumed to correspond to an individual site that has

ggressive alignment
en sequential-
hignment (see

et
ly a
flg

GAATC sequence 1
GAGTT sequence 2

GAATC GAGTT
total of 2
sequence changes

GA(A/G)T(C/T) ancestor sequence

Figure 6.1. Origin of similar sequences. Sequences 1 and 2 are each assumed to be derived from a
common ancestor sequence. Some of the ancestor sequence can be inferred from conserved positions
in the two sequences. For positions that vary, there are two possible choices at these sites in the ances-
tor.
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been evolving according to the observed sequence variation in the column. Most methods

ove, the analysis of sequences that are strongly similar along their entire
aightforward. However, to align most sequences requires the position-
lignment. Gaps represent an insertion or deletion of one or more
uring evolution. Proteins that align well are likely to have the same
In general, sequences that lie in the core structure of such
sertions or deletions because any amino acid substitutions
phobic environment of the core. Gaps should therefore be
ence alignments that represent these core sequences. In
ng insertions and deletions, may be found in the loop
e-dimensional structure because these regions do not
Loop regions interact with the environment of small
gins (see Chapter 9).
representing mutational changes in sequences,
ents of genetic material. The expectation that
e event introduces the problem of judging
hat order. Gaps are treated in various
as to how they should be treated has
gns in an alignment that do not
arkers in some situations.
S individual sites in the
scores as a basis for phyloge-
d at each sequence position
penalties for gaps is often
ores that are suitable

NOME COMPLEX¥TY AND PHYLOGENETIC ANALYSIS

important to keep in mind that the genomes
origin. Some parts of the genome are passed on by ver-
normal reproductive cycle. Other parts may have arisen by hori-
genetic material between species through a virus, DNA transformation,
15, or some other horizontal transfer mechanism. Accordingly, when a particular
ene is being subjected to phylogenetic analysis, the evolutionary history of that gene may
not coincide with the evolutionary history of another.

One of the most significant uses of phylogenetic analysis of sequences is to make pre-
dictions concerning the tree of life. For this purpose, a gene should be selected that is uni-
versally present in all organisms and easily recognizable by the conservation of sequence in
many species. At the same time, there should be enough sequence variation to determine
which groups of organisms share the same phylogenetic origin. Ideally, the gene should
also not be under selection, meaning that as variation occurs in populations of organisms,
certain sequences are not favored with a loss of the more primitive variation.

Two molecules of this type that carry a great deal of evolutionary history in inter-species
sequence variations are the small rRNA subunit and mitochondrial sequences. A large
number of rRNA sequences from a variety of organisms were aligned and the secondary
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structure was deduced following methods discussed in Chapter 5. Phylogenetic predictions
were then miade using the distance method described below (Woese 1987). On the basis of
signatures, or regions within the molecule that are conserved in one group
t different in another (Fig. 6.2), Woese (1987) predicted that early life
ee main kingdoms—Archaea, Bacteria, and Eukarya—a view that has
ayr 1998). Evidence for the presence of additional organisms in these
en found by PCR amplification of environmental samples of RNA
ore detailed analysis was used to find relationships among individ-
SIOUp- The types of relationships found among the prokaryotic
gure 6.3. The use of mitochondrial sequences for analysis of
w in the description of the parsimony method of phyloge-

A sequences suggest a quite clear-cut model for the evo-
of other genes and gene families has revealed that the
and that a more appropriate model might be the one
pany examples of horizontal or lateral transfer of
at introduce new genes and sequences into an
e 1999). These types of transfers are inferred
of different genes in an organism, such as
hat codon use in different genes varies
is is based on the number of genes
to the rRNA tree (Snel et al.

(see Chapter 10
shared betwee
1999).

To track

as also been paid to the
rors in many of the assump-
yeen rates of change in dif-
discussed below. More-
ts, placing sequences
angements with-

fore need
1onal domains,
within a protein family. These
1cant sequence similarity. The remainder of
ay have variable levels of similarity. In nucleic acid
ce pattern may provide a binding site for a regulatory molecule,
oter function, RNA splicing, or some other function. It may be difficult to
e extent of these patterns for phylogenetic analysis; however, statistical approach-
s discussed in Chapter 4 may be used.

Another feature of genome evolution that should be considered in phylogenetic analy-
sis is the occurrence of gene duplication events that create tandem copies of a gene. These
two copies may then evolve along separate pathways leading to different functions. How-
ever, these copies maintain a certain level of similarity and undergo concerted evolution, a
process of acquiring mutations in a coordinated way, probably through gene conversion or
recombination events. Speciation events following gene duplications will give rise to two
independent sets of genes and sequences, one set for each gene copy. As discussed in Chap-
ter 3 and illustrated in Figure 3.3, two genes in the same lineage can have different rela-
tionships. In the example shown in Figure 3.3, genes al and a2 have been derived from
gene a. The pair is then segregated by speciation such that there is one al a2 pair in one
species evolving along one path and a second al a2 pair in a second species evolving along
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Figure 6.2. The signature positions in rRNA that distinguish Archaea and Bacteria. Shown is the predicted secondary structure

for E. coli 16S ribosomal RNA with the most highly conserved sequence positions marked by the sequence character and the

positions that distinguish Archaea and Bacteria shown by a black dot. Other marker positions in the sequence were used to

define the third group, the Eukarya. (Reprinted, with permission, from Woese 1987 [copyright American Society for Microbi-

ology].)
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Figure 6.3. Rooted tree of life showing principal relationships among prokaryotic domains Bacteria and Archaea (Woese 1987;
Barns et al. 1996; Brown and Doolittle 1997). Branch lengths are approximate only. Species that have been sequenced or are
being sequenced are shown. A comprehensive database of sequenced microbial genomes is maintained at http://www.tigr.org/.
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Figure 6.4. The reticulated or net-like form of the tree of life. Analysis of rRNA sequences originally
suggested three main branches in the tree of life, Archaea, Bacteria, and Eukarya. Subsequent phylo-
genetic analysis of genes for some metabolic enzymes is not congruent with the rRNA tree. Hence, for
these metabolic genes, the tree has a reticulated form due to horizontal transfer of these genes between
species. (Reprinted, with permission, from Martin 1999 [copyright Wiley-Liss, Inc.].)

a second path, reproductively and genetically isolated from each other. The al genes in the
different species are orthologous to each other, as are the a2 genes, but the al and a2 genes
are paralogous because they arose from a gene duplication event. These relationships can
be determined by a careful analysis of genomes and sequence relationships (Tatusov et al.
1997) that is discussed further in Chapter 10.

THE CONCEPT OF EVOLUTIONARY TREES

An evolutionary tree is a two-dimensional graph showing evolutionary relationships
among organisms, or in the case of sequences, in certain genes from separate organisms.
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The separate sequences are referred to as taxa (singular taxon), defined as phylogenetical-
ly distinct umits on the tree. The tree is composed of outer branches (or leaves) represent-
ing the tax nodes and branches representing relationships among the taxa, illustrat-
ed as sequ -D in Figure 6.5. Thus, sequences A and B are derived from a common
represented by the node below them, and C and D are similarly related.
mmon ancestors also share a common ancestor represented by a node
he tree. It is important to recognize that each node in the tree repre-

ondk that point, any further evolutionary changes in each new

th@se in the other new branch. The length of each branch to the
of sequence changes that occurred prior to the next level
ample, the branch length between the A/B node and A is
en the A/B node and B, indicating the species are evolv-

at has transpired since the separation of A and B is
phylogenetic analysis is the amount of sequence
o between the A/B node and B. Hence, judg-
d B, the same number of sequence changes
some biological or environmental reason
gone more mutations since diverging
from the ancesto n anch lengths would be shown on
the tree. Some t etica ae rates of evolution in the tree
branches are t} eas others as discussed below. The
assumption ofl ate of mutation known as the molecular

oclchyipe mo itable 2d species (Li and Graur 1991;
gd below. Even if there is a
g branch to another can
enerally assumed to
planation of the
all sequence

ave been de
onary change, statistical va
ysis. The number of substitutions
aCg g to the Poisson distribution (see Chapt8
Poissg stribution), and the rate of change is assum
posif (Swofford et al. 1996).

A. Rooted tree

sequence A
node
sequence B
sequence C
branch
sequence D
B. Unrooted tree
sequence A sequence C
sequence B sequence D
Figure 6.5. Structure of evolutionary trees.
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The tree shown is only one of many, each predicting a different evolutionary relation-
ship amongfthe sequences or taxa. The number of possible rooted trees increases very
e number of sequences or taxa, as shown in Table 6.2. A root has been
ition indicating that in this evolutionary model of the sequences this basal
on ancestor of all of the other sequences. A unique path leads from the
her node, and the direction of the path indicates the passage of evolu-
t is defined by including a taxon that we are reasonably sure branched
er taxa under study but should be related to the remaining taxa. It
ot, assuming that the molecular clock hypothesis holds.
engths in a tree is referred to as the tree length. The tree is
in that only two branches emanate from each node. This
ect during evolution—only one splitting away of a new
ore than one branch emanating from a node if the events
cannot be resolved, or to simplify the tree.

e relationships among sequences A-D in Figure 6.5A
Detween the tree in A and that in B is that the tree
shows the evolutionary relationships among
ation of the oldest ancestry. B could be con-
ining root to the black line. A root could
e are a great many more possibilities
of taxa or sequences, as shown in

for rooted than

Table 6.2.
Three meth

erally used to,

inum likelihood—are gen-
for the observed varia-
2 different type of analysis as
of considerations that need

o°a method. These method ore than one tree meets
psen for being the most likely tree. terns in these trees

ometimes, branch lengths are

ilonary trees to consider as a function of number of

No. of rooted trees No. of unrooted trees
3 1
15
105 15
7 10,395 954
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also included pext to the names, e.g., A:0.05. From this information, a tree-drawing pro-
gram may be ised to produce a tree representation of the data.

METHODS

Choose Obtain Is there Yes Maximum
set of multiple > strong > parsimony
related sequence sequence methods

sequences.’ alignment similarity?3
(Chapter 4).2
No
Y
Is there clearly Yes
recognizable J | Distance
sequence ~ | methods
similarity?4
No
Y
Maximum Analyze how
likelihood ,| \Welldata
methods® suppprt
prediction.®

erent programs and program
methods and by analyzing
ences should align with
atterns or domains

utionary models assume that the varia-
1ignment represents single-step changes and that no
red. As the observed variation increases, more multiple-step
reversions are likely to be present. Corrections may be applied for such
increasing the observed amount of change to a more reasonable value. These cor-
sume a uniform rate of change at all sequence positions over time. Gaps in the multiple
quence alignment are usually not scored because there is no suitable model for the evolutionary
mechanisms that produce them.

. This question is designed to select sequences suitable for maximum parsimony analysis. Other meth-
ods may also be used with these same sequences. For parsimony analysis, the best results are obtained
when the amount of variation among all pairs of sequences is similar (no very different sequences are
present) and when the amount of variation is small. Some columns in the multiple sequence align-
ment will have the same residue in all sequences; other columns will include both conserved and non-
conserved residues. There should be a clear-cut majority of certain residues in some columns of the
alignment but also some variation. These more common residues are taken to represent an earlier
group of sequences from which others were derived. If there is too much variation, there will be too
many possible ancestral relationships. Because the maximum parsimony method has to attempt to fit
all possible trees to the data, the method is not suitable for more than 11 or 12 sequences because there
are too many trees to test. More than one tree may be found to be equally parsimonious. A consensus
tree representing the conserved features of the different trees may then be produced.
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4. The purpose of this question is to select sequences for phylogenetic analysis by distance methods. Dis-

tance methi®ds are able to predict an evolutionary tree when variation among the sequences is present
ces are more alike than others) and when the amount of variation is intermediate. The
ged positions in an alignment between two sequences divided by the total number of
ns is the distance between the sequences. As distances increase, corrections are neces-
s from single-step changes between sequences (see note 3). Of course, as distances
ainty of alignments also increases (see Chapter 4), and a reassessment of the suit-
sequence alignment method may be necessary. Sequences with this type of vari-
ble for phylogenetic analysis by maximum likelihood methods. Distance meth-
a large number of sequences. The program CLUSTALW produces a
time as a multiple sequence alignment (Higgins et al. 1996).

ay be used for any set of related sequences, but they are particularly
e variable. These methods are computationally intense, and com-
the number of sequences since the probability of every possible
in the text. An advantage of these methods is that they provide
variation in the sequences.

ent columns is resampled to test how well the branches on

MAXIMU

inimizes the number of steps
this reason, the method
method. A multiple sequence
likely to correspond. These
nce alignment. For each
ber of evolutionary
analysis is contin-
t produce the

ylogenetic trees that requir
uce the observed sequence changes
position in the sequence alignment.
umber of changes overall for all sequence po
for sequences that are quite similar and for small
best suited. T j i icularl ed, but it is guaran-
1ng a group of sequences are exam-
1me-consuming and is not useful for data that
ces or sequences with a large amount of variation. One or
re predicted and other assumptions must be made to root the pre-

P offers a number of options and parameter settings for a parsimony analysis in the
Macintosh environment. The main programs for maximum parsimony analysis in the
PHYLIP package (Felsenstein 1996) are listed below.

For analysis of nucleic acid sequences, programs are:

1. DNAPARS, which treats gaps as a fifth nucleotide state.

2. DNAPENNY, which performs parsimonious phylogenies by branch-and-bound search
that can analyze more sequences (up to 11 or 12).

3. DNACOMP, which performs phylogenetic analysis using the compatibility criterion.
Rather than searching for overall parsimony at all sites in the multiple sequence align-
ment, this method finds the tree that supports the largest number of sites. This method
is recommended when the rate of evolution varies among sites.

4. DNAMOVE, which performs parsimony and compatibility analysis interactively.



Branch-and-bound is

a method that stops
analyzing a particular
branching pattern in
trees when it is not
possible to obtain a
more  parsimonious
solution than has been
already found.
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For analysis of protein sequences, the program is:

1. PROTPARS, which counts the minimum number of mutations to change a codon for
o acid into a codon for the second amino acid, but only scores those muta-
utational path that actually change the amino acid. Silent mutations that

simony analysis is illustrated in the following example of four
le 6.3 and Figure 6.6 (adapted from Li and Graur 1991). An exam-

is itochondrial sequences using PAUP and MacClade is then
equence alignment, only certain sequence variations at a
ony analysis. In the analysis, all of the possible unrooted
es) are considered. The sequence variations at each site
ips of the trees, and the tree that requires the smallest
ariation is determined. This analysis is repeated for
ees) that supports the smallest number of changes
ined as the sum of the number of steps in each

found. The
of the tree,

Example: Maximum Parsimony Analysis of Sequences

Table 6.3 shows an example of phylogenetic analysis by maximum parsimony. This
method finds the tree that changes any sequence into all of the others by the least num-
ber of steps.

Rules for analysis by maximum parsimony in this example are:

1. There are four taxa giving three possible unrooted trees.

2. Some sites are informative, i.e., they favor one tree over another (site 5 is infor-
mative but sites 1, 6, and 8 are not).

3. To be informative, a site must have the same sequence character in at least two
taxa (sites 1, 2, 3, 4, 6, and 8 are not informative; sites 5, 7, and 9 are informative).

4. Only the informative sites need to be analyzed.

The three possible trees are shown in Figure 6.6. The optimal tree is obtained by adding
the number of changes at each informative site for each tree, and picking the tree
requiring the least number of changes. A scoring matrix may be used instead of scoring
a change as 1. Tree 1 is the correct one and the tree length will be 4 (one change at each
of positions 5 and 7 and two changes at position 9).

In the above example, because there were only four sequences to consider, it was neces-
sary to consider only three possible unrooted trees. For a larger number of sequences, the
number of trees becomes so large that it may not be feasible to examine all possible trees.
The example of 12 sequences below took only a few seconds on a Macintosh G3. The
exhaustive and branch-and-bound options of the program PAUP will analyze all possible
trees, and if the number is too large, the program can keep running for a very long time.

For large numbers of sequences, PAUP provides a program option called “heuristic,”
which searches among all possible trees and keeps representative trees that best fit the data.
The presence of common branch patterns in these trees reveals some of the broader fea-
tures of the phylogenetic relationships among the sequences.
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Table 6.3. Example of phylogenetic analysis to find the correct unrooted tree from four aligned
sequences byjthe maximum parsimony method

Sequence position (sites)
and character

4 5 6 7 8 9
A G T G C A
C G T G C G
T A T C C A
G A T C C G
TREE Il TREE I
Taxon 1 Taxon 3 Taxon 1 Taxon 2 Taxon 1 Taxon 2
G A G /G G . /G
AN . A/ NN N AN N
[ )
. / \A A / \A A / \A
Taxon 2 Taxon 4 Taxon 3 Taxon 4  Taxon 4 Taxon 3
Total tree 1 2 3
length plus 2 other character arrangements

in trees Il and 1lI

e is a substitution

Figure 6.6. Example of phylogenetic analysis based on sequence position 5 in Table 6.3, using the
maximum parsimony method. (Redrawn, with permission, from Li and Graur 1991 [copyright Sin-

auer Associates].)

To search for this tree, which best fits all the sequence data, the trees that best fit each
vertical column of sequence characters in Figure 6.7A were first determined. In some
columns, the data are not informative, as in the case of all nucleotides being the same.
For a nucleotide position to be informative, at least two different nucleotides must be
present in at least two of the sequences. A tree that provides the least number of evolu-
tionary steps to satisfy the data in all columns, the most parsimonious tree, is then
found.

Analysis of Mitochondrial Sequences by PAUP

Parsimony can give misleading information when rates of sequence change vary in the
different branches of a tree that are represented by the sequence data. These variations pro-
duce a range of branch lengths, long ones representing more extended periods of time and
short ones representing shorter times. For example, the real tree shown below in Figure
6.8A includes two long branches in which G has turned to A independently, probably with
a number of intermediate changes that are not observed in the sequence data. Because in
a parsimony analysis rates of change along all branches of the tree are assumed to be equal,
the tree predicted by parsimony and shown in Figure 6.8B will not be correct.

Although other columns in the sequence alignment that show less variation may pro-
vide the correct tree, the columns representing greater variation dominate the analysis
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(Swofford et al. 1996). Such long branches may be broken down if additional taxa are pres-
ent that are mlore closely related to taxa 1 and 4, thereby providing branches that intersect
es and give a better resolution of the changes.

parsimony, available in PAUP. In this method, four of the sequences
, and only transversions in the aligned positions are scored as changes
ransversions are the most significant base changes during evolution.

o craate a balanced distribution, and the changes in each column
seg e position) are assumed to occur independently of each
wo long branches as in the case discussed immediately
Figure 6.9A, and one of the sites has changed multiply
chance. Traditional parsimony will identify this tree
ese long branches do indeed exist, then other sites
ents shown in Figure 6.9B. The greater the number
the A-type sites revealed in A. The evolutionary
type B from the number of type A. If, on the
2 quartet of sequences, there will be very few
g correct tree. On the other hand, if many
i little weight. These calculations are
performed for all (INT8 possible types of transversions for
the four sequen ® recei is chosen. These methods and
other more sop hods for c& lengths are discussed in
detail in Swoffi 996). The PHY R computes Lake’s and
otherphiiog saf@imiticleic aci P also includes an option for

ance methods provide
titutions. Distance
ally to be better
anch lengths

pove methods, maximum lil
dictions when corrections are mad
0d4 as neighbor joining discussed below ha
an both standard and evolutionary parsima@
g (Jin and Nei 1990; Swofford et al. 1996).

ere are options in PAUP and MacClade for selecting 3 oSt parsimonious
i T sequence characters in each
each sequence or taxon, as shown below.
ositions lower in the tree to upper positions, some
1igned an unambiguous character (shown in color, Fig. 6.10).
e assignment may be ambiguous because the node is leading to two dif-
acters above (thin black line). It is possible to arrange these ambiguities option-
1n two ways: one is to delay them going as far up the tree away from the root as possi-
ble (the Deltran option; not shown in figure); a second is to introduce them as soon as
possible and as close to the root as possible (the Acctran option; not shown in figure). The
effect of using Deltran is to force parallel changes in the upper branches of the tree, that of
Acctran is to force reversals in the upper branches. Using these options is not recom-
mended unless such variations are expected, as in analysis of more divergent sequences
(Maddison and Maddison 1992).

Homoplasy refers to the occurrence of the same sequence change in more than one
branch of the tree. If all the sequence character changes support the same tree, there is no
homoplasy. In reality, homoplasy is usually found for some characters for any tree. Mac-
Clade allows changing of the tree to avoid homoplasy at a sequence position, but the new
tree length will often increase, thus making the tree a less parsimonious choice than the

predi
are




This sequence format
is the NEXUS format,
which allows addi-

tional  information
about the sequences,
species  relationship,

and a scoring system
for base substitution
referred to as a cost or
step matrix.

A. Mitochondrial sequences.

#NEXUS

begin taxa;
dimensions ntax=12;
end;

begin characters;
dimensions nchar=898;
format missing=? gap=- matchchar=.
options gapmode=missing;
matrix

interleave datatype=dna;

Lemur_ catta AAGCTTCATAGGAGCAACCATTCTAATAATCGCACATGGCCTTACATCATCCATATTATT
Homo sapiens AAGCTTCACCGGCGCASTCATTCTCATAATCGCCCACGGGCTTACATCCTCATTACTATT
Pan AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCTCATTATTATT

Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCATCATTATTATT
Pongo BAGCTTCACCGGCGCARCCACCCTCATGATTGCCCATGGACTCACATCCTCCCTACTGTT
Hylobates AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTAACCTCTTCCCTGCTATT
Macaca_fuscata AAGCTTTTCCGGCGCARCCATCCTTATGATCGCTCACGGACTCACCTCTTCCATATATTT
M. mulatta AAGCTTTTCTGGCGCAACCATCCTCATGATTGCTCACGGACTCACCTCTTCCATATATTT

M. fascicularis AAGCTTCTCCGGCGCAACCACCCTTATAATCGCCCACGGGCTCACCTCTTCCATGTATTT
M. sylvanus AAGCTTCTCCGGTGCAACTATCCTIATAGTTGCCCATGGACTCACCTCTTCCATATACTT
Saimiri_ sciureus AAGCTTCACCGGCGCAATGATCCTAATAATCGCTCACGGGTTTACTTCGTCTATGCTATT
Tarsius_syrichta AAGTTTCATTGGAGCCACCACTCTTATAATTGCCCATGGCCTCACCTCCTCCCTATTATT

Lemur catta CTGTCTAGCCAACTCTAACTACGAACGAATCCATAGCCGTACRATACTACTAGCACGAGG
Homo_sapiens CTGCCTAGCAAACTCRAACTACGAACGCACTCACAGTCGCATCATAATCCTCTCTCAAGG
Pan CTGCCTAGCRAACTCAAATTATGAACGCACCCACAGTCGCATCATAATTCTCTCCCAAGG

Gorilla CTGCCTAGCAAACTCAAACTACGAACGAACCCACAGCCGCATCATAATTCTCTCTCAAGG
Pongo CTGCCTAGCAAACTCAAACTACGAACGAACCCACAGCCGCATCATAATCCTCTCTCAAGG
Hylobates CTGCCTTGCARACTCAAACTACGRACGAACTCACAGCCGCATCATAATCCTATCTCGAGG
Macaca_fuscata CTGCCTAGCCAATTCAAACTATGAACGCACTCACAACCGTACCATACTACTGTCCCGAGG
M. mulatta CTGCCTAGCCAATTCAAACTATGAACGCACTCACAACCGTACCATACTACTGTCCCGGGG

M. fascicularis CTGCTTGGCCAATTCAAACTATGAGCGCACTCATAACCGTACCATACTACTATCCCGAGG
M._sylvanus CTGCTTGGCCARCTCARACTACGRACGCACCCACAGCCGCATCATACTACTATCCCGAGG
Saimiri_sciureus CTGCCTAGCAAACTCAAATTACGAACGAATTCACAGCCGAACAATAACATTTACTCGAGG
Tarsius_syrichta TTGCCTAGCAAATACAAACTACGAACGAGTCCACAGTCGAACAATAGCACTAGCCCGTGG

end;

B. Phylogenetic tree

Lemur catta

Homo sapiens
Pan

Gorilla

Pongo
Hylobates
Macaca fuscata
M. mulatta

M. fascicularis
M. sylvanus
Saimiri sciurei

Tarsius syrichi
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A. B
Taxon 1 Taxon 4
G G
Taxon 1 Taxon 2
G >_<A
A A G A
Taxon 2 Taxon 3 Taxon 4 Taxon 3
Figure 6.8. Type of sequence variation that leads to an incorrect prediction by the maximum parsi-
mony method.
y |
A. B.
Taxon 1 Taxon 2 Taxon 1 Taxon 2
C C C C
Taxon 4 Taxon 3 Taxon 4 Taxon 3

Figure 6.9. Type of sequence variation that, if detected, can reduce incorrect predictions by the max-
imum parsimony method.

hich is the minimum
lasy, the greater the

eter used is the consistend
divided by the actual tree length.
aal t oth, and the smaller the value of CI.

Parg y methods can use information on the numb
cha one residue into another. For example, the nu ired to
chafige one amino acid into another in one branch of a tree ca o account. The
paLsii bet of such steps. This number of
orporated into a matrix, called a step or cost

JP"and MacClade to use.

dPROTPARS for protein squences in the PHYLIP package scores
ations that produce amino acid changes (Felsenstein 1996). This program
dlgorithm similar to one described by Sankoff (1975) for determining the mini-

OT steps to

-
-

Figure 6.7. Analysis of mitochondrial sequences using the maximum parsimony method provided by
the PAUP program. (A) Portion of a multiple sequence alignment of the mitochondrial sequences pro-
vided in the PAUP distribution package. PAUP will import sequences in other multiple sequence align-
ment format and convert them into the NEXUS format. The program READSEQ will reformat multiple
sequence alignments into the NEXUS format. This format includes information about type of sequence,
coding information, codon positions, differential weights for transitions and transversions, treatment of
gaps, and preferred groupings (see Chapter 2). Only a portion of the NEXUS file is shown. In this anal-
ysis, branch-and-bound and otherwise default options were used. Gaps are treated as missing informa-
tion. The number of sequences is indicated as ntaxa, number of alignment columns as nchar, and the
interleave command allows the data to be entered in readable blocks of sequence 60 characters long. (B)
One of the two predicted trees. The tree file of PAUP was edited in MacClade and output as a graphics
file.
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Asp Leu Gly Ser

Figure 6.10. Tracing of sequence characters in an evolutionary tree by MacClade.

or changing one sequence into another. Similar
ilable in PAUP and MacClade. The PAUP pro-
tion, which is a short cut for analyzing trees
represent the amino acid (PAUP vers 3.1 manual, pp.

4-126).

een each pair in a group of
uence pairs that have the
ence changes between t
share a node or common ancest each joined to that

e method is often the first ste gnment, as dis-
and Doolittle, and a collection of programs
an alignment and tree of a set of protein sequences
. The program CLUSTALW, discussed in Chapter 4, uses the
istance method as a guide to multiple sequence alignments. PAUP ver-
s options for performing a phylogenetic analysis by distance methods. Programs
the PHYLIP package that perform a distance analysis include the following programs,
which automatically read in a sequence in the PHYLIP infile format (see Chapter 2) and
automatically produce a file called outfile with a distance table.

1. DNADIST computes distances among input nucleic acid sequences. There are choices
given for various models of evolution as described below and a choice for the expected
ratio of transitions to transversions.

2. PROTDIST computes a distance measure for protein sequences, based on the Dayhoff
PAM model (see p. 78) or other models of evolutionary change in proteins (Felsenstein
1996).

Once distance matrices have been produced, they may be used as input to the following
distance analysis programs in PHYLIP. The PHYLIP programs all automatically read an
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input file called infile and produce an output file called outfile. Hence, file names have to
be edited wheéh using these programs. In this example, the distance outfile must be edited
to include the distance table and the number of taxa, and then the file is saved under

a phylogenetic tree assuming additivity of branch lengths using the
ethod described below and does not assume a molecular clock
tion along branches to vary).

2. K yl@genetic tree using the Fitch-Margoliash method but under
ar clock.

genies using the neighbor-joining or unweighted pair
ean (UPGMA) described below. The neighbor-joining
ecular clock and produces an unrooted tree. The
lar clock and produces a rooted tree.

yrmally calculate a similarity score, defined as the
of conservative substitutions in the alignment
An identity score between the sequences
ing just the ideg the alignment. For phylogenetic analy-
s, the distance scg his score between two sequences is
the number of mi ons be number of sequence positions
that must be cha ate the o be ignored in these calcu-
lations or treatg tions. Whe matrix is used, the cal-
culation is sli omplicated, but e same. These methods are

two sequences

0ds depends on th
be made additive on a predict®
A-D, as shown below in Figure 6.1
voluti anges reflected by the tree in Figure 6.
the by es of the tree corresponds to distances betweg
6.1 and C. In this tree, each change only occurs once, a¥ s of the
saghie change occurring twice (homopla Although this pat ange is idealized and
3OS ame change occurring more than
lustrates the additivity principle for four
o1 tour sequences predicted by this tree, dap + dcp = dac
1s example the additivityis 3 + 3 =7 + 7 = 8 + 6. For any other
puld be examples of parallel changes and reversions. The additivity condition
elaxed such that dyg + dcp = dac + dpp and dag + dep = dap + dpc will still hold
even for sequences in which the changes in the sequence are not fully additive. For each set
of four sequences, the tree for which the above additivity condition among the distances
best holds provides information as to which sequences are neighbors. This method may be
used to evaluate trees and find the minimum evolution tree for four sequences and for any
additional number of sequences by extending the analysis to additional groups of four
sequences (Sattath and Tversky 1977; Fitch 1981; for references, see Swofford et al. 1996).
In order to calculate branch lengths, distance methods assume additivity in the distances
between sequences. However, real sequence data may not fit these idealized conditions. As
a result, a small positive, zero, or even a negative value may be calculated for a branch
length. This result may be due to errors in the sequences or sequence alignment, statistical
variation, or simply a reflection of two or more sequences diverging at approximately the
same time from a common ancestor.

ich the distances among a
ee. Suppose there are
yere derived from
hanges along
n in Figure
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A. Sequences

sequence A ACGCGTTGGGCGATGGCAAC
sequence B ACGCGTTGGGCGACGGTAAT
sequence C ACGCATTGAATGATGATAAT
sequence D ACACATTGAGTGATAATAAT

B. Distances between sequences, the number of steps
required to change one sequence into the other.

NaAB
Nac
NaD
NBc
NBD
Ncp

WNO0NW

C. Distance table

|
w
o|IN| O
W|N|o0 | O

OO|T|>

D. The assumed phylogenetic tree for the sequences A-D
showing branch lengths. The sum of the branch lengths
between any two sequences on the trees has the same
value as the distance between the sequences.

N 7
' N

B D

A C

Figure 6.11. Set of idealized sequences for which the branch lengths of an assumed tree are addi-

tive.

ely found in real distance data, is that the dis-
at for three taxa, dac = max(dag, dpc). If the data meet
ances between two taxa and their common ancestor are equal
. 1996). If the distances follow this relationship, the rates of evolution in the
anches are approximately the same, thereby meeting the expectations of the molec-
ular clock hypothesis. If these conditions are not met, an analysis based on the assumption
of a molecular clock may give misleading results. One method of finding the best tree
under such conditions is to transform the sequences after identifying one or more
sequences that are least like the rest, called an outgroup (Li and Graur 1991). Some dis-
tance methods are based on this assumption and others are not. The overall objective of
the distance methods described below is to find this tree by the identification of consecu-
tive sets of neighbors starting with the most alike sequence pair.

Fitch and Margoliash Method and Related Methods

The Fitch and Margoliash (1987) method uses a distance table illustrated in Figure 6.11C.
The sequences are combined in threes to define the branches of the predicted tree and to
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calculate the branch lengths of the tree. The branch lengths are assumed to be additive, as
described ab@¥e. This method of averaging distances is most accurate for trees with short
esence of long branches tends to decrease the reliability of the predictions
996). The following first example describes the use of the algorithm for
nd the second example expands the analysis to more than three

Example 1: Use of Fitch Margoliash Algorithm for Three Sequences

Steps in algorithm for three sequences:

1. Draw an unrooted tree with three branches emanating from a common node and
label ends of branches as shown in Figure 6.12. Given the closer distance between
A and B, the branch lengths between these sequences are expected to be shorter,
as indicated.

2. Calculate lengths of tree branches algebraically:
Distances among sequences A, B, and C are shown in the following table.

A B C
A — 22 39
B — — 41
C — — —

The branch lengths may be calculated algebraically using the branch labels a—c in
Figure 6.12:

distance from AtoB =a + b =22 (1)

distance from Ato C = a + ¢ = 39 (2)

distance from Bto C = b + ¢ = 41 (3)

subtract (3) from (2),a — b = —2 (4)

add (1) and (4), 2a = 20,a = 10

from (1) and (2), b = 12, ¢ = 29

Note that this calculation finds that the branch lengths of A and B from their com-
mon ancestor are not the same. Hence, A and B are diverging at different rates of
evolution by this calculation and model. For the rates to be the same, these dis-

tances would be the same and equal to the distance from A to B divided by 2 =
22/2 = 11.

Figure 6.12. Tree showing relationship among three sequences A, B, and C.
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Example 2: Use of Fitch-Margoliash Algorithm for Five Sequences

A B C D E
A — 22 39 39 41
B — — 41 41 43
C — — — 18 20
D — — — — 10
E _ _ _ _ _

These distance data are derived from the unrooted tree shown in Figure 6.13. The
Fitch-Margoliash method may be extended from three sequences as shown in example
1 by following the steps shown in the box below, Steps in Fitch-Margoliash algorithm
for more than three sequences. The method will find the correct tree and provide the
branch lengths a—g, as illustrated below.

1. The most closely related sequences given in the distance table are D and E. A new
table is made with the remaining sequences combined.

2. The average distances from D to A, B and C and from B to A, B and C are calcu-

lated.
D E ave. ABC
D — 10 32.7
E — — 34.7
average ABC — — —

3. The average distances from D to ABC and from E to ABC can also be found by
averaging the sum of the appropriate branch lengths a—g.

Distance between Dand E = d + e
Average distance between D and ABC =d + m,m =g+ [(c + 2f+ a + b)/3]
Average distance between E and ABC = e + m

By subtracting the third from the second equation and adding the result to the
first equation, d = 4 and e = 6.

4. D and E are now treated as a single composite sequence (DE), and a new distance
table is made. The distance from A to (DE) is the average of the distance of A to
D and of A to E. The other distances to (DE) are calculated accordingly.

A B C (DE)
A — 22 39 40
B — — 41 42
C — — — 19
(DE) — — — —




5. The next most closely related sequences are identified, in this case C with the (DE)
composite group. The new table is:

PHYLOGENETIC PREDICTION

DE C Ave. AB
DE — 19 41
C o = 40
Ave. AB — — —

By algebraic manipulations similar to those described above, ¢ = 9 and the com-
posite distance of g +[(e + f)/2] = 10.

6. Given the above composite distance and the previously calculated values of e and
f, then g = 10—+ [(e + f)/2] = 5.
The next round of tree-building is that A and B are the next matching pair, giving
a = 10 and b = 12, and a composite distance of 29.7 = [3f + ¢ + 2¢ + d + ¢e]/3
giving f = 29.7—[(9 + 10 + 10)/3] = 20. These values are precisely those given in
the original tree.

7. Although by design we have generated the correct tree, normally the next step is to
repeat the process starting with another sequence pair, such as A and B. We will leave
this step as a student exercise to show that the correct tree will again be predicted.

ions of sequences in pairs to
ercent change from the
uence pair. These values are
by the number of pairs =
he square of the percent

Steps Followed by Fitch-Margoliash Algorithm for Phylogenetic Analysis of More Than
Three Sequences

Steps in algorithm for more than three sequences:

1. Find the most closely related pair of sequences, for example, A and B.

2. Treat the rest of the sequences as a single composite sequence. Calculate the aver-
age distance from A to all of the other sequences, and B to all of the other
sequences.

3. Use these values to calculate the distances a and b as in the above example with
three sequences.

C
A
10

a f

5
b 20 g 4 S

12 6 d

e
B E
Figure 6.13. Tree showing relationships among sequences A—E.
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4. Now treat A and B as a single composite sequence AB, calculate the average dis-
tances between AB and each of the other sequences, and make a new distance table
from these values.

5. Identify the next pair of most closely related sequences and proceed as in step 1 to
calculate the next set of branch lengths.

6. When necessary, subtract extended branch lengths to calculate lengths of inter-
mediate branches.

7. Repeat the entire procedure starting with all possible pairs of sequences A and B,
A and C, A and D, etc.

8. Calculate the predicted distances between each pair of sequences for each tree to
find the tree that best fits the original data.

The Neighbor-j or Methods

ei 1987) is very much like the Fitch-Margo-
h sequences to pair is determined by a dif-
gspecially suitable when the rate of evo-
lution of the sepa de ics. When the branch lengths of trees
of known topolg d to va ulates varying levels of evolu-
tionary changg Or-joining tath and Taversky method,
described belg ost reliable in | ge (Saitou and Nei 1987).
Pearson et Ze enhanced the nei$§ pethod so that a set of trees that

glestree, may B b The general neighbor join-
[tp.virginia.edu/pub
ng chooses the sequences that
ates of the branch lengths that mo$
betwe sequences. It is not necessary to compa
squa t as in the Fitch-Margoliash method. The me
effgéf of the pairing on th
bétween the sequencessaie

to give the best least-
e actual distances
ind the least-
ased on the
e sum of the branch lengths of distances

atesthessim of the BFARCh lengths for a tree that
dppearance of such a tree and the cal-
¢ data in Example 2 above are shown in Figure

¢ neighbor-joining algorithm is to decompose or modify the star-like
gurc 6.14 by combining pairs of sequences. When this step is performed for
*hces A and B in Example 2, the new tree shown in Figure 6.15 will be produced. The
tree has A and B paired from a common node that is joined by a new branch j to a second
node to which C, D, and E are joined. The sum of the branch lengths of this new tree is cal-
culated as shown in Figure 6.15.

In the neighbor-joining algorithm, each possible sequence pair is chosen and the sum of
the branch lengths of the corresponding tree is calculated. For example, using the data of
Example 2, Sap = 67.7, Sgc = 81, Scp = 76, and Spg = 70, plus six other possible combi-
nations. Of these, Sxp has the lowest value. Hence, A and B are chosen as neighbors on the
grounds that they reduce the total branch length to the largest extent. Once the choice of
neighbors has been made, the branch lengths a and b and the average distance from AB to
CDE may be calculated by the FM method, as described in the last section. a is calculated
by a = [dapt(dactdaptdap)/3— (dpctdpptdpe)/3]/2 = (22+39.7—41.70)/2=10,
and b is calculated by b = [dap+(dpctdeptdpr)/3— (dactdaptdag)/3]/2 =
(22+41.7—39.7)/2=12.
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Figure 6.14. Tree for five sequences with no pairing of sequences. In the neighbor-joining method,
the sum of the branch lengths Sy = a + b + ¢ + d + e s calculated. The known distances from (1) A
toB,Dap=a+ b;(2) AtoC=Dsc=a+ ¢ (3) BtoC = Dgc =b + ¢ and finally (4) D to E, Dpg
=d + eforatotalof 4 + 3 + 2 + 1 =10 combinations. In summing the 10 distances = 22 + 39 +

.+ 10 = 314, each branch g, b, ¢, etc., is counted four times. Hence, the sum of branch lengths is
314/4 = 78.5. In general, for N sequences, So = 2 D;; /(N — 1), where Dj; represents the distances
between sequences i and j, i < j.

algorithm is like that of the Fitch-Margoliash
forming a single composite sequence is pro-
sed to find the next sequence pair and
h lengths. The cycle is repeated until
 that tree have been identified.
; Li and Graur 1991) also is a
is method, the sequences
-wise distances for the three
gach group are then compared
. This procedure is repeat-
en in the lowest sum of
able 6.4. The pair is
to find the next

The Unweighted Pai

Figure 6.15. Tree for five sequences with pairing of A and B. The sum of the branch lengths S,, = a
+ b+ c+d+ e+ fis calculated algebraically from the original distance data. The sum is given by
Sab = [(dac + dap + dce + dsc + dep + dpe)/6) + dap /2 + [(dcp + dee + dpe )/3] = 244/6 +
22/2 + 48/3 = 67.7. In general, the formula for N sequences when m and n are paired is S,,, = [(2
dipy + din)2(N — 2)] + d,,0/2 + 2 dii/N — 2 where i and j represent all sequences except m and #,
and i <j.
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Table 6.4. The Sattath and Tversky (1977) method for finding repeated neighbors

Chosen set pf¥4 Sum of distances Pairs chosen

ABCD, ap + tiep = 22 + 18 = 40 AB, CD
nac + ngp = 39 + 41 = 80

nap + npc = 39 + 41 = 80

Nap + ncg = 22 + 20 =42

Nac + npg =39 + 43 = 82

fag + npc =39 + 41 =82 AB, CE
fap + npg =22 + 10 = 32

nap + npg = 39 + 43 = 82 AB, DE
g+ npp =41 + 41 = 82

«c t npg =39 + 10 = 49

p + ncg = 39 + 20 =59 AC, DE
nep = 41 + 18 = 59

npe = 41 + 10 = 51

g = 41 + 20 = 61 BC, DE
=43 + 18 = 61

wes a pair gives the lowest score: AB (3), DE (3), CD (1),

peighbors.

§ from Column
,and BC (1). AB
e five sequences g. 6.13) are divided into the five possible groups of
pur. The sums of dis or the three possible groupings are then deter-
mined and the close 0 he closest neighbors overall are those that
appear as neighbo his appear most often as neighbors. These
sequences are the bors to oths on the phylogenetic tree by the
method of Fitch

od for tree const

method is a e rate of change along the
pproximately ultrametric (see
d for pairing or clustering
noths between the most
it or sequence cluster

ences are includ-

ber of variations
GMA method starts by calctk
equences, then averages the distan8
and th sequence or sequence cluster, and conti
ed ip ree. Finally, the method predicts a position
g Example 2 from the above analysis:

-
Example: UPGMA Analysis

1. Sequences D and E are the most closely related. The branch distances d and e to
the node below them are calculated as d = e = n,4,/2 = 5 based on the assumption
of an equal rate of change in each branch of the tree. The tree is often drawn in a
form (Fig. 6.16a) where only the horizontal lines indicate branch lengths, but the
branches are intended to be joined to a common node as in Figure 6.16B.

A. B.
d_, D
d
E
e
¢ E
Figure 6.16. Branch lengths of most closely related sequences by UPGMA method.




2. Treating D and E as a composite sequence pair, find the next most related pair.
The calculations will be similar to the FM method above and the distance between
DE and C, npgc = 19, will be the shortest one. Because we are assuming an equal
rate of change in each branch of the tree, there will be two equal length branches,
one including D and E and passing to a common node for C and DE, and a sec-
ond from the common node to C. Some simple arithmetic gives ¢ = 19/2 = 9.5
and g = 9.5 — 5 = 4.5 (Fig. 6.17).
—

A. B.

g
9
‘ -
e
© E
c

Figure 6.17. Inclusion of third sequence for calculation of branch lengths by UPGMA method.

3. With CDE now being treated as a composite trio of sequences, the next closest pair
is A and B, giving an estimate of the distance between them and a common node
in the tree of a = b = n,p /2 = 11 (Fig. 6.18).

Figure 6.18. Inclusion of fourth and fifth sequences in UPGMA tree.

. The final calculation is to take the average distance between the two composite sets
of sequences CDE and AB. The average of n1ac, nap, Mag, Nac, D, and ngg = 39
+ 39 + 41 + 41 + 41 + 43 = 40.7. One half of this distance 40.7/2 = 20.35 is
included in the part of the tree that goes from the root to CDE, and the other half
goes from the root to AB. Note also that the presence of the root breaks the branch
between AB and CDE, previously denoted fin this example, into two components
fland f2. Hence, f2 + g + d = 20.35, f2 = 20.35 — 4.5 — 5 =10.85,and f1 + a
= 20.35, f1 = 20.35 — 11 = 9.35 (Fig. 6.19).

A. B.

D
g
2 z E
C
ROOT —
a A ROOT
f1
b B

Figure 6.19. Final UPGMA rooted tree for five sequences.
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The UPGMA method can lead to an erroneous tree if the rates of mutation in the
branches offthe tree are not uniform (Li and Graur 1991; Li 1997).

Choosing an Outgroup

dently obtained information that certain sequences are more distantly
may be followed which ensures that those sequences are added last to
t to the root. This modification can improve the prediction of trees
y forging the addition of the outgroup at a later stage in the proce-
s of this type are referred to as an outgroup. Suppose, for
B are from species that are known to have separated from
ary time based on the fossil record. A and B may then be
g one or more outgroups with the distance method can
ee root (Swofford et al. 1996). The root will be placed
at connects the rest of the sequences. It is important
osely related to the rest of the sequences, but also
gs between the outgroup and the other sequences
emselves. Choosing too distant a sequence as
ions due to the more random nature of the
gther sequences (Li and Graur 1991; Li
e possible, and there has been more
eason, using sequences that are
ion can lead to errors (Swof-
ory of sequence changes
e much more difficult to pre-
tionary history of the gene
jon. If this assumption is
orrect analysis could

ford et al. 199

as if horizontal gene transfer ha

milarity to Distance Scores

EOT determini i i i quences, it is necessary to
ority of the available sequence align-
een sequences rather than distances. For simple
easure of the number of sequence positions that match in
s distance is the number of positions that are different and that must
0 convert one sequence into the other. This difference reflects the number of
ges that occurred since the sequences diverged from a common ancestor.

As outlined in Chapter 3, similarity methods provide an alignment score, and the sig-
nificance of this score can be quite reliably calculated based on the probability that a score
between unrelated sequences could achieve that score. What is needed is a way to convert
such a score to a distance equivalent so that the appropriate phylogenetic analysis can be
performed. A simple method, described and used above, is to count the number of differ-
ent sequence pairs in an alignment. Another method is to convert the similarity score
between two sequences to a normalized measure of similarity that varies from 0 for no sim-
ilarity to 1 for full similarity. The distance can then be readily calculated.

Feng and Doolittle (1996) describe a method for calculating such a normalized score
between a pair of aligned sequences. They calculate the similarity score between two
sequences S, for a given scoring matrix and gap penalty using a Needleman-Wunsch
alignment algorithm (see Chapter 3). They then shuffle both sequences many times, align



PHYLOGENETIC PREDICTION = 265

pairs of shuffled sequences using the same scoring system, and obtain a background aver-
age score S,.qa for unrelated sequences. Finally, each sequence is aligned with itself to give
i re that could be obtained in an alignment of two identical sequences with
used, and the average of these two scores, Sigent, 15 calculated. The nor-
score S between the proteins is then given by

S = (Sreal - Srand)/(sident - Srand) (1)

g Srand from the scoring matrix, amino acid composition,
le sequence alignment is also given (Feng and Doolittle

d on the Smith-Waterman algorithm is obtained (see
similarity scores can be used. If A and K have been
gap penalty combination, the standardized score

S" = NStana — log Kmn (2)

where m and n proximate probability of a

of 5 for S’ corresponds

Srand(p = 0.007) = 1/ N (5 + log Kmn) (3)
value for Sigent> Sident(calc)> 18 provided by t score for a
identical amino acids (the scores along the dia of the
acid substitution matrix) averaged over amino acid e matrix. If

o acid, the predicted score
Sident(calc)> Where n is the length of the

20
Sident(calc) =n 1; pisii (4)

where 3, p; = 1. For the PAM250 matrix, the average expected score for a matched pair of
identical amino acids is 4.95. Subtracting S,.,4 from this value is not appropriate because
the score is not a local alignment score but a global one that grows proportional to
sequence length. With the above changes, Equation 1 becomes

S= (Sreal - Srand(p = 0.007) ) / Sident(calc) (5)

Once the similarity score S has been obtained, it is tempting to calculate the distance
between the sequences as 1 — S. Recall that a simple model of amino acid substitutions is
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a constant probability of change per site per unit of evolutionary time. Accordingly, some
of the obserpd substitutions in a sequence alignment represent a single amino acid change
o sequences, but others represent two or more sequential changes. The
hat the expected number of 0, 1, 2, . . . substitutions is expected to follow

changes is e~ P. The probability of one or more changes, which corre-
iven by 1 — e~ ? such that

S=1-¢?P (6)
d rearranging then gives

D= —1log (S) (7)

Example: Distance Calculation

Two sequences of length 250 have an alignment score of 700, using the PAM250 scor-
ing matrix and gap penalties of —12, —2, which are small enough to give a long but
local alignment score, then A = 0.145 and K = 0.012 (Altschul and Gish 1996). Then
Srand(p = 0.007) — 1/0.145 ( 5+ log 0.012 X 250 X 250) = 80 and Sident(calc) =495 X
250 = 1238. Then, S = (700 — 80) / 1238 = 0.50, and D =-log 0.50 = log 2 = 0.69.

There are some additional points to make about the above procedure for calculating
genetic distance from similarity scores:

1. Use of scoring matrices that are based on an evolutionary model are much pre-
ferred to matrices that are based on some other criterion. The Dayhoff PAM
matrices meet this criterion but are based on a small data set. A more recent set of
PAM matrices (Jones et al. 1992) discussed in Chapter 3 are based on a much larg-
er data set and are based on the same evolutionary model as the Dayhoff matrices.

2. A scoring matrix that models the amino acid substitutions expected for a particu-
lar distance should be used. The PAM250 matrix models a separation giving only
a remaining level 20% similarity. In the above example, the alignment should be
rescored using the log odds PAM80 matrices, which model the expected substitu-
tion proteins that are 50% similar, and a better alignment score may be obtained.
Suitable gap penalties will have to be found by trial and error, and statistical
parameters will be calculated as described above. One must also be sure that the
scoring system chosen provides a local alignment by demonstrating a logarithmic
dependence of the growth of the alignment score on sequence length.

3. Note that Equation 7 provides an estimate of distance based on the observed sim-
ilarity. The relationship only holds for sequences that are 50% or more similar.
Beyond that point, so many multiple substitutions are possible that the distance
essentially becomes 1.

4. When Feng and Doolittle perform distance calculations, they use multiple
sequence alignments to assess the changes that occur in a family of related pro-
teins. This method is a large improvement over aligning sequence pairs because
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the presumed evolutionary changes can be seen in perspective of a whole related fam-
ily of proteins. However, using multiple sequence alignment presents a brand new set
of challenges that are discussed in Chapter 4.

The following sections describe two entirely different approaches for determining
the evolutionary distance between related sequences.

Correction of Distan
for Multiple Change

Acid Sequences

tion is made that each observed sequence change repre-
is assumption may be reasonable for sequences that are
of observed changes increases, the chance that two or
same site and that the same site changed in both
changes that may have occurred are illustrated in
ges, only certain classes shown cause sequence

ribed in Chapter 3, such multiple evolu-
t for a fixed period of evolutionary
illion years (my). Such tables pro-
ount all possible changes that
e highest log odds score
vides a measure of the

complexity for correcting
ic acid sequences. These
egree of change per

n has occurred, that posi-
also assumes that each base will even-
sequences (0.25) once equilibrium has been
and Graur 1991; Li 1997) that the average number of substi-
etween two sequences A and B by this model is given by

KAB = _3/4 loge [1 - 4/3 dAB] (8)

Thus, Kup in the above example is Kxg = —3/4 log, [1 — (4/3 X 0.15)] = 0.17, which is
slightly greater than the observed number of changes (0.15) to compensate for some muta-
tions that may have reverted. For more different sequences, such as A and D (dp = 8/20
= 0.4), the number of substitutions will be relatively higher than the observed number of
changes. Kyp = —3/4 log, [1 — (4/3 X 0.4) = 0.57]. Hence, the difference between the
estimated and observed substitution rates will increase as the number of observed substi-
tutions increases.

The Jukes-Cantor model has been modified to take into account unequal base frequen-
cies (Swofford et al. 1996), which may be calculated from the multiple sequence alignment
of the sequences.
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Ancestral sequence

A

C

T

G

A

A

C

G

T

A

A

C

G

C
A A
C C—>A Single substitution
T T
G G
A—>C—>T A Multiple substitutions
A A
C—>G C—>A Coincidental substitutions
G G
T>A T=>A Parallel substitutions
A . A,
A=>C—>T A—>T * = Convergent substitution
C C
G G +
C C—> T+ C + = Back substitution

Sequence 1 Sequence 2

Figure 6.20. Types of mutational changes in nucleic acid sequences that have diverged during evolu-
tion. Note that the observed sequence changes between these homologous sequences represent only a
fraction of the actual number of sequence variations that may have occurred during evolution and
that multiple changes may have occurred at many sites. (Redrawn, with permission, from Li and
Graur 1991 [copyright Sinauer Associates].)

KAB = —B loge [1 - dAB/B] (9)

where Bis given by B = 1 — (fa> + fo* + fc* + fr°) and fa is the frequency of A in the set
of sequences, etc.

A slightly more complex model of change, the so-called Kimura two-parameter model
(Kimura 1980), assumes that transition mutations should occur more often than transver-
sions. However, there are four ways of obtaining a transition mutation A - Gand C « T,
but eight ways of making transversions, A & C,A o T,G « T,and G « C. Thus, in gen-
eral, transversions can more readily be produced by multiple changes than transitions, and
the frequency of each should be adjusted separately. This model also assumes that the
eventual frequency of each base in the two sequences will be 1/4. In this case, it is necessary
to calculate the proportion of transition and transversion mutations between two
sequences. If the frequencies of transitions and transversions between two sequences A and
B are dABtransition and dABtransversion) T eSPeCtiVel% ifa=1/ (1 _ZdABtransition - dABtransversion)
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and b = 1/ (1 —2daguansversion)> and if the basic mutation rate to transitions and transver-
sions is the e, the number of substitutions per site Kxp (Li and Graur 1991) is given by

Kap = 1/2 log, (a) + 1/4 log, (b) (10)

that between two 20-nucleotide-long aligned sequences there are six
sversions, thena=1/(1 —2X 03 —0.1) =333, b=1/(1 —
2 X w —=M/2 log, (3.33) + 1/4 log,. (1.25) = 0.66. For comparison, by
—3/4log, [1 — 4/3 X 8/20] = 0.57. The larger predicted
Kimura two-parameter model is due to the greater num-
model that could have given rise to the two observed

wo-parameter models can be modified to take into
jon at different sites in the sequence alignment (see
also a Kimura three-parameter model that dis-
ersions with A « C/ G « T transversions.
e methods for phylogenetic construction

et al. 1996, 1

various mod
cribed above.
For distance ca € base-change models provide ways to
improve estimat ge MU equences. They have less effect
on phylogenetig closely of the tree branch lengths, but
a stronger effe, e distantly r¢

-encoding

onest types of phylogenetic comp3
Juence alignment of a set of proteins
scori 1x and then to design a phylogenetic tree &

iologists is to perform
0 or BLOSUM62
ining method.

The on of sequence positions in an alignment that Arity score.
Angbrguous matches and gaps may also be included in th or similarity.
e distance mi i i eulated afd used to produce a tree.

apter 4 provide both an alignment and a

ons for phylogenetic predictions offers several advantages.
structure and function to proteins. The order of variations in the tree
fore provide information concerning the influence of the amino acids on func-
and of mutations associated with conservation of function and others with changes in
function. The difficulty of using the above methods with protein sequences is that, in many
cases, no evolutionary model of protein sequence variation is being used. Some amino acid
substitutions are much more rare than others and should therefore reflect a longer evolu-
tionary interval. Therefore, treating the substitutions equally may not provide the best
phylogenetic prediction.

Another method for circumventing this problem is to use PAM scoring tables. Recall
that as evolutionary distance between proteins increases, the expected pattern of amino
acid changes varies. Rarer substitutions come into play, and the rate of increase of other
changes with increasing time slows down. The Dayhoff PAM amino acid scoring matrices
were designed to predict the expected substitutions for proteins separated by different evo-
lutionary distances. The PAM score of the matrix that provides the best alignment score
between two sequences reflects the evolutionary separation of the proteins, a distance of 1
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PAM being
PAM tables,

proximately 10 my. Some phylogenetic programs use these original Dayhoff
nother updated set of protein PAM tables based on changes in 40-fold more
M250 equivalent is called PET91) is also available (Jones et al. 1992). Some
diction methods use these PAM tables.
s have been criticized for failure to take the mutational origin of amino
count. Although useful for analyzing amino acid variation, they do not
e mutations required for some amino acid changes (see Chapter 3, p.
ion arises through mutation and natural selection acting on DNA
cid ghanges require several mutations in codons and should there-
fore ingiacid mutations, which require only one mutation in a codon.
ing protein sequences is to assess the number of nucleic
nerate the amino acid differences. In the original Fitch-
nino acid sequences were available, the distance between
¢ the minimum number of base changes that would be
he first amino acid into a codon for the second.
ences that encode proteins, cDNA sequences may
ences of the encoded proteins. Distance meth-
ence after the number of different positions
sequences ha ein sequences are very similar, most of the
anges that will b aat do not change the amino acid and
should provide a Serl genetic history without the compli-
cations of evoluti .Ho of variation increases, the num-
ber of silent chg case and gme of these sites will occur,
whereas at ot T more rare gar. It is very difficult to
make accuraf ns when faced with n the rate of change at differ-
ity is t3 ges in only the first and sec-
odon, ignoring the t hich is the source of most
wofford et al. 1996). A comp acid sequences that
for mutations that either (1) changg ) do not change
ea d may be made. Once these types of charg ished, phylo-
genefi@predictions based on only one of them may be
ASftnal type of correction that may be made to phy for the
inffease in multi ituti i i petween protein expected
es provides this type of correction,
model for nucleic acid sequences to protein
istance is given by Equation 9, where B = 19/20 for the
mino acid representation and B = 1 — 3, f,,; for unequal represen-
mino acids, where f,,; is the frequency of amino acid 7, and the sum is taken
20 amino acids. The second representation is, of course, much preferred, since
amino acid frequencies in proteins vary.

Another correction that may be applied to protein distances is due to Kimura (1983).
This correction is based on the Dayhoff PAM model of amino acid substitution. If K is the
corrected distance and D the observed distance (number of exact matches between two
sequences divided by total number of matched residues in alignment), then

red instead ¢

K= —In(1—D - 0.2 D? (11)

This formula may be used up to values of D = 0.75. Above this value, tables based on
the Dayhoff PAM model at these distances are used. This correction is applied by
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CLUSTALW, a commonly used program for multiple sequence alignment and phyloge-

Comparison of Open Re rames by Distance Methods

When

of syn
syno

equences that encode proteins first became available, the appearance
itutions that do not change the amino acid (silent changes) and non-

d sequences and background noise of silent mutations in
(Swofford et al. 1996).

ates of synonymous and nonsynonymous mutations (Li
997) employs the following steps:

ch codon position that can give rise to synonymous
an give rise to nonsynonymous substitutions are
st codons count as two nonsynonymous sites
ss of the substitution. Similarly, many third-
ites contribute synonymous and nonsyn-
of these two possible substitutions is
e two values for the two sequences
is then calc mous sites and Nyoneyn is the

average nu

2. Each pair nucleotide differences

An alternative method for estimating synonymous and nonsynonymous substitutions
(Li et al. 1985; Li and Graur 1991; Li 1993, 1997) is to classify each nucleotide position in
the coding sequences as nondegenerate, twofold degenerate, or fourfold degenerate. The
Genetics Computer Group program DIVERGE uses this method. A site is nondegenerate
if all possible changes at this site are nonsynonymous, twofold degenerate if one of the
three possible changes is synonymous, and fourfold degenerate if all possible changes are
synonymous. For simplification, the third position of isoleucine codons (ATA, ATC, and
ATT in the universal code) is treated as a twofold degenerate site even though in reality it
is threefold degenerate. The number of each type of site in each of the two sequences is cal-
culated and the average values for the two sequences are calculated. Each pair of codons in
the sequence alignment is then compared to classify nucleotide differences as to type of site
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(nondegenerate, twofold degenerate, or fourfold degenerate) and as to whether the change
is a transitigh or a transversion.

Calculation of Nonsynonymous and Synonymous Changes

To calculate these values, note that by definition all substitutions at nondegenerate sites
are nonsynonymous, and all substitutions at fourfold degenerate sites are synonymous.
At twofold degenerate sites, transitions nearly always produce synonymous changes,
and transversions nearly always produce nonsynonymous changes. Hence, counting
transitions and transversions at these sites provides a nearly exact count of the number
of synonymous and nonsynonymous substitutions, respectively. One exception to this
scoring scheme in the universal genetic code is that one type of transversion in the first
position of the arginine codons produces a synonymous change, whereas the other
transversion and the transition produce a synonymous change. Another exception is in
the last position of the three isoleucine codons. When the codons differ by more than
one substitution, a method similar to that described above is used to evaluate each pos-
sible pathway for changing one codon into the other, and the average of each type of
change in the pathways is then calculated.

the proportions of each type of
onymous substitutions per
ions may then be calcu-
orrect for multiple mutations
s before these calculations

The scored ¢
site that are tr
synonymous
lated. T

Example of Distance Analysis: Using the PHYLIP Programs
DNADIST and FITCH (Fitch-Margoliash Distance Method)

A set of aligned DNA sequences was converted to the PHYLIP format and placed in a
text file called infile in the same folder/directory as the programs (Fig. 6.21A). READ-
SEQ may be used to produce a file with this format from a multiple sequence align-
ment. Note the required spacing of the sequences including spaces for a sequence name
at the start of each row of sequence, and note that line 1 includes two numbers giving
the number of sequences and the length of the alignment. Note also the presence of
ambiguous sequence characters that are recognized appropriately by the program.
Longer sequence alignments may be continued in additional blocks without the identi-
fying names.

DNADIST was invoked, the program automatically read the infile, and after setting
various options on a menu, an outfile was produced (Fig. 6.21B). This file was edited to
remove all but the distance matrix shown. Note the required number on line 1 giving
the number of taxa or sequences. Each distance is given twice as a mirror image about
the upper-right to lower-left diagonal.

The predicted unrooted tree is given in the outfile and the treefile by the FITCH pro-
gram. The average percent standard deviation of the predicted intersequence distance
was 14, and 990 trees were analyzed to produce this result. The treefile was used as input
to the program DRAWTREE, and shown in Figure 6.21C.
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A. Sequences in Phylip format

20 60
MACHIERH AACNGGCCTT CTACTAGCCA
CIRCUS AACTGGCCTN CTACTAGCAA
LOPHICTI AACTGGCCTC CTACTGGCCA
AQUILA AACCGGCCTC CTATTAGCCA
ACCIPITE AACCGGCCTC CTCCTAGCRA
BUTASTUS AACCGGCCTC CTCCTAGCAA
HAERAETU AACCGGCCTC CTACTAGCCA

B. DNA distances.

TACACTACAC
CACACTATTC
TGCACTACAC
TACACTACAC
TACACTACAC
TACACTACAC
TGCACTACAC

20
MACHTERH  0.0000 0.173% 0.1705 0.0899 0.0899
0.1292 0.1496
CTRCUS 0.1739 0.0000 0.2373 0.1921 0.2144
0.2144 0.2853
LOPHICTI 0.1705 0.2373 0.0000 0.1674 0.2326
0.1674 0.1468
AQUILA 0.0899 0.1921 0.1674 0.0000 0.1268
0.0698 0.1674
ACCIPITE 0.0899 0.2144 0.2326 0.1268%8 0.0000
0.1885 0.2326
BUTASTUS 0.0711 0.1%21 0.2102 0.1073 0.0168%
0.1674 0.2102
HAERAETU 0.0899 0.1921 0.0883 0.0698 0.1268
0.1268 0.1468
ELANUS 0.1496 0.2853 0.1468 0.1674 0.2326
¢.1268 0.0000
C. Fitch tree

Figure 6.21. Tree predicted by FITCH (Fitch-Margoliash distance method) for the DNA sequences

given in the example above.

CGCAGACACC ACCCTAGCCT
CGCAGACACT ACCCTGGCTT
CGCAGACACA TCACTAGCCT
GGCAGACACC ACCCTAGCCT
CGAAGACACC ACCCTAGCCT
CGCAGACACC ACCCTAGCCT
CGCAGACACC ACCCTAGCCT

0.0711 0.0893% 0.1496

0.1921 0.19%921 0.129%2

0.2162 0.0883 0.1885

0.1073 0.063%8 0.1268

0.0169 0.1268 0.1468

0.0000 0.1073 0.1268

6.1073 0.0000 0.1268

0.2102

0.1468 0.2102

TTTCATCTGT
TCTCATCCGT
TCTCGTCCGT
TCTCATCCGT
TTTCATCAGT
TTTCATCAGT
TCTCGTCCGT

0.1292 0.1705
0.1496 0.1496
0.1674 0.2557
0.1468 0.1885
0.1268 0.1674
0.1073 0.1468
0.1073 0.1674
0.2326 0.2785
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THE MAXIMUM LIKELIHOOD APPROACH
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